Monterey Avenue Skatepark Capitola, CA

TRAFFIC IMPACT STUDY FINAL REPORT

AUGUST 28, 2015

Prepared For:

City of Capitola 420 Capitola Avenue Capitola, CA 95010

Prepared By:

824 Bay Avenue, Suite 10 Capitola, CA 95010

Contents

INTRODUCTION	4
Study Methodology	4
Development Conditions	4
Operating Conditions and Criteria for Intersections	5
Study Intersections Included in Analysis	6
EXISTING CONDITIONS	7
Existing Roadway Network	7
Existing Peak-Hour Turning Movement Volumes	7
Existing Transit Facilities	7
Existing Pedestrian and Bicycle Facilities	7
Existing Level of Service at Study Intersections	8
PROPOSED PROJECT	9
Proposed Site Use	9
Project Trip Generation	9
Project Trip Distribution and Assignment	12
Existing Plus Project Level of Service at Study Intersections	12
CUMULATIVE (2035) CONDITIONS	13
Cumulative Lane Configurations and Traffic Control	13
Year 2035 Forecast Model Volumes and Cumulative No Project Level of Service at Study Intersections	13
Cumulative Plus Project Level of Service at Study Intersections	13
SUMMARY OF IMPACTS	14
ADDENDICES	10

INTRODUCTION

This traffic study presents the findings of the traffic analysis for the proposed skatepark which will be located within Monterey Park on Monterey Avenue in Capitola, CA. The skatepark will be approximately 6,000 square feet in size and the facilities in the park will cater to skateboard activities for middle school/pre-teen aged children.

The site currently has 26 striped parking spaces and on-street parking is available along Monterey Avenue. The skateboard facility would require 6 parking spaces during the peak use periods and these could overlap with baseball field activities. The skatepark would be used primarily by children later in the afternoon (after school, but before sunset) and on weekends during the day, peaking around noon-time through the early afternoon. The analysis periods for determining potential impacts to the road network is thus the weekday PM peak period and Saturday midday peak period. The skatepark will be located immediately adjacent to the residential neighborhood and the existing New Brighton Middle School. The majority of user trips are anticipated to originate from the surrounding neighborhoods. Observation from similar sites indicate typical peak occupancy of between 10-15 children. Several sites were surveyed, and ultimately the data from the Live Oak Skatepark in Santa Cruz were deemed comparable to the proposed Project site and used to develop trip generation data. **Figure 1** illustrates the location of the project site. **Figures 2a and 2b** display the site plan and skatepark layout.

STUDY METHODOLOGY

DEVELOPMENT CONDITIONS

This traffic impact study was based on the following development conditions:

- Existing Conditions
- Existing Plus Project Conditions
- Cumulative (2035) Conditions
- Cumulative (2035) Plus Project Conditions

OPERATING CONDITIONS AND CRITERIA FOR INTERSECTIONS

Analysis of potential environmental impacts at intersections is based on the concept of Level of Service (LOS). The LOS of an intersection is a qualitative measure used to describe operational conditions. LOS ranges from A (best), which represents minimal delay, to F (worst), which represents heavy delay and a facility that is operating at or near its functional capacity. Levels of Service for this study were determined using methods defined in the *Highway Capacity Manual*, 2010 (HCM) and Synchro 8 traffic analysis software. Synchro 8 uses HCM 2010 methodologies.

The HCM 2010 methodologies included procedures for analyzing side-street stop-controlled (SSSC), all-way stop-controlled (AWSC), and signalized intersections. The SSSC procedure defines LOS as a function of average control delay for each minor street approach movement. Conversely, the AWSC and signalized intersection procedures define LOS as a function of average control delay for the intersection as a whole. **Table 1** relates the operational characteristics associated with each LOS category for signalized and unsignalized intersections.

Table 1 - Intersection Level of Service Definitions

Level of Service	Description	Signalized (Avg. control delay per vehicle sec/veh.)	Unsignalized (Avg. control delay per vehicle sec/veh.)
А	Free flow with no delays. Users are virtually unaffected by others in the traffic stream	< 10	≤ 10
В	Stable traffic. Traffic flows smoothly with few delays.	> 10 – 20	> 10 – 15
С	Stable flow but the operation of individual users becomes affected by other vehicles. Modest delays.	> 20 – 35	> 15 – 25
D	Approaching unstable flow. Operation of individual users becomes significantly affected by other vehicles. Delays may be more than one cycle during peak hours.	> 35 – 55	> 25 – 35
E	Unstable flow with operating conditions at or near the capacity level. Long delays and vehicle queuing.	> 55 – 80	> 35 – 50
F	Forced or breakdown flow that causes reduced capacity. Stop and go traffic conditions. Excessive long delays and vehicle queuing.	> 80	> 50

Sources: Transportation Research Board, Highway Capacity Manual 2010, National Research Council,

Project impacts are determined by comparing conditions without the proposed project to those with the proposed project. Significant impacts for intersections are created when traffic from the proposed project causes the LOS to fall below the City LOS threshold and causes any impacted intersections to deteriorate further per the criteria indicated below.

Consistent with the significant impact criteria documented in the City of Capitola General Plan, the City considers LOS C as the standard, but accepts a lower standard as the minimum acceptable at signalized and unsignalized intersections within the Village Area, along Bay Avenue, and along 41st Avenue where LOS D is the minimum acceptable standard.

STUDY INTERSECTIONS INCLUDED IN ANALYSIS

The proposed project will generate new vehicular trips that will increase traffic volumes on the nearby street network. To assess changes in traffic conditions associated with the proposed project, the following intersections, listed with the applicable jurisdiction, were selected by the City of Capitola for evaluation in this traffic study:

- 1. Kennedy Drive / Park Avenue (All-Way Stop Controlled)
- 2. Monterey Avenue / Bay Avenue (All-Way Stop Controlled)

These study intersections are illustrated in **Figure 3**.

EXISTING CONDITIONS

EXISTING ROADWAY NETWORK

Below is a description of the principal roadways included in this study:

Monterey Avenue

Monterey Avenue is a two-lane residential minor arterial with on-street parking that becomes Kennedy Drive before intercepting with Park Avenue. It serves as a connector for the neighborhood and provides access to New Brighton Middle School and the Monterey Park baseball field. The posted speed limit in the project vicinity is 25 miles per hour. Monterey Avenue accommodates approximately 4,000 vehicles daily.

EXISTING PEAK-HOUR TURNING MOVEMENT VOLUMES

Weekday PM intersection turning movement volumes for the two study intersections were taken directly from the City of Capitola General Plan EIR published in 2013. Additional Saturday midday intersection turning movement volumes were collected in May 2015. Volumes for intersections were collected during the midday and PM peak periods between 12:00-2:00PM on a Saturday and between 4:00-6:00 PM on a weekday, respectively. No growth has occurred in the City since 2013; thus the traffic counts were deemed applicable for use in the weekday PM analysis. These traffic counts were taken in the weekday when local schools were in session and the weather was fair. Existing Conditions turning movements are shown in **Figure 3.** Intersection volume data sheets for all traffic counts are provided in **Appendix A**.

EXISTING TRANSIT FACILITIES

The vicinity of the proposed project lies within the Capitola service region, which provides two bus routes (Routes 54 and 55) along Park Avenue and along Bay Avenue. There are three bus stops within walking distance of the proposed skatepark. One bus stop is located 0.4 miles from the proposed skatepark on Bay Avenue, just northwest of its intersection with Monterey Avenue. Two bus stops are located less than 0.5 miles from the skatepark on Park Avenue, at the intersections of Monterey Avenue and Park Avenue and Monterey Avenue and McCormick Avenue.

EXISTING PEDESTRIAN AND BICYCLE FACILITIES

Pedestrians: In the immediate project vicinity, there are currently sidewalks located on both sides of Monterey Avenue. ADA ramps at the driveways are non-compliant.

Bicycles: Class 3 bicycle facilities (shared vehicular-bicycle travel lanes marked with "sharrows") are currently provided on Monterey Avenue in both directions within the project vicinity.

EXISTING LEVEL OF SERVICE AT STUDY INTERSECTIONS

Traffic operations were evaluated at the study intersections under existing traffic conditions. Results of the analysis are presented in **Table 2**. Locations operating unacceptably are bolded.

As shown in **Table 2**, Intersection #1 - Kennedy Drive / Park Avenue currently operates at an acceptable LOS C in the Saturday midday peak, but operate at an unacceptable LOS E in the weekday PM peak. Intersection #2 - Monterey Avenue / Bay Avenue currently operates at acceptable LOS B or better during the time periods of analysis. Analysis sheets are provided in **Appendix B**.

Table 2 – Existing Intersection Level of Service Analysis

#	Intersection	Control Type	LOS Standard	Peak Hour	Existing (2	2015)
			Starradia		Delay	LOS
1	Kennedy Drive / Park Avenue	AWSC	С	Weekday PM	38.4	E
1	Kelliledy Drive / Park Avenue	AWSC	C	Weekend Midday	21.1	С
2	Mantaray Ayanya / Pay Ayanya	AWSC	E	Weekday PM	10.6	В
	Monterey Avenue / Bay Avenue	AVVSC	С	Weekend Midday	9.2	Α

Notes:

- 1. Analysis performed using HCM 2010 methodologies
- 2. Delay indicated in seconds/vehicle
- 3. Intersections that fall below City standard are shown in **bold**.

PROPOSED PROJECT

PROPOSED SITE USE

The proposed project will comprise a skatepark intended for middle school/pre-teen aged children which will be located at the existing Monterey Park on Monterey Avenue in Capitola, CA. The site is immediately adjacent to New Brighton Middle School. The skatepark will be approximately 6,000 square feet in size.

The site currently has 26 striped parking spaces, and on-street parking is available along Monterey Avenue. The proposed skatepark would require 6 parking spaces during the peak use periods, which is based on the maximum number of trips generated of the two peak hours studied as presented in **Table 3** in the following section. Assuming 20 baseball team members would play at peak use, 20 vehicles would be parked at the site – this presents a worst case analysis, since some parents may park on the street or carpool. With skatepark use overlapping with baseball field activities, a total of 26 vehicles would be parked during peak use at the skatepark. The project therefore would not need to provide additional spaces. The skatepark would be used primarily by children later in the afternoon (after school, but before sunset) and on weekends during the day, peaking around lunchtime or just thereafter. Outdoor activity use will also be dictated by weather conditions. The park will be located immediately adjacent to the residential neighborhood in the area. The majority of visitors are anticipated to originate from the surrounding neighborhoods and would travel to the park by skateboard/bicycle. The project site plan and proposed skatepark layout are presented in **Figures 2a and 2b**.

PROJECT TRIP GENERATION

A trip is defined in *Trip Generation* as a single or one-directional vehicle movement with either the origin or destination at the project site. In other words, a trip can be either "to" or "from" the site. In addition, a single customer visit to a site is counted as two trips (i.e., one to and one from the site).

Trip generation for the project was calculated based on available information at similar sites and engineering judgement. For purposes of determining the worst-case impacts of traffic on the surrounding street network, the trips generated by a proposed skatepark are typically estimated between the hours of 4PM to 6PM on a weekday and between 12PM and 2PM (midday) on a Saturday.

Information from similar studies was used to estimate the trip generation, including a survey at the Live Oak neighborhood (Jose Avenue) skatepark. The Jose Avenue Skatepark is similar in size to the Project and contains skatepark features with a level of difficulty intended for beginners and young children, unlike Santa Cruz's San Lorenzo Skatepark, which contains more advanced skatepark facilities tailored to teenagers. Jose Avenue Park also contains a playground and open spaces and is located well within a residential neighborhood, unlike San Lorenzo Skatepark, which is solely a skatepark and is located adjacent to main arterial road San Lorenzo Boulevard.

The trip rate for the proposed park was also compared to the Center Avenue Skatepark in Huntington Beach, which has rates of 1.36 trips per KSF in the weekday PM peak hour and 1.86 trips per KSF in the Saturday midday peak hour. This park, though larger in size, uses trip generation rates that account for its size and is therefore an appropriate comparison.

Factoring in trip generation rates of these skateparks, a similar trip generation rate was therefore used for the Project, taking into account the smaller footprint of the facility; thus the Project trips generated would be less. In addition, many neighborhood children will either bike, walk or skate to the facility and would not contribute additional vehicular trips to the Project. Non-vehicular access to the McGregor Skatepark is more difficult compared to the Monterey Skatepark and this vehicular trip generation rate to the Monterey Skatepark would be lower.

The highest trip generation will occur on a Saturday. The location of the Project does not lean itself to attract regional traffic and it is expected that this skatepark will remain a local attraction, mainly due to its secluded location among residential properties. The project will generate 8 trips (4 in, 4 out) during the weekday PM peak hour and 11 trips (6 in, 5 out) over the Saturday Peak hour. **Table 3** indicates these trip generation calculations.

Table 3 - Project Trip Generation

			WEEKDAY F	M PEA	ΚH	OUR⁴	WEEKEND M	IDDAY F	PEAK	HOUR ³
Land Uses	۱	Project Size	Total Peak Hour	IN	1	OUT	Total Peak Hour	IN	1	OUT
Trip Generation Rates ¹										
Center Avenue Skatepark - Huntington Beach, CA ²	45.5	KSF	1.36	50%	/	50%	1.86	53%	/	47%
Jose Avenue Skatepark - Santa Cruz, CA	5.0	KSF	0.80				1.20			
Weighted Average Rates used for Monterey Ave. Skatepark			1.30	50%	/	50%	1.79	53%	/	47%
Trips Generated										
Monterey Avenue Skatepark - Capitola, CA	6	KSF	8	4	/	4	11	6	/	5
Net Project Trip Generation			8	4	1	4	11	6	1	5
Parking Requirement (maximum of inbound vehicles during	g either p	eak hour)	6 spaces							

Notes:

- 1. Trip generation rates were calculated from observations made at comparable skateboard parks observed on June 6-7, 2015 and from TIAs of comparable skatebarks.
- 2. Trip generation rates from Center Avenue Skatepark found in the City of Huntington Beach Center Avenue Skatepark TIA, published December 2011.
- 3. Weekend Midday Peak Hour is from 2PM-3PM, based on observations at skateparks listed in the table. In/Out rates taken from City of Huntington TIA.
- 4. Weekday PM Peak Hour is from 4PM-5PM, based on findings in City of Huntington Beach Center Avenue Skatepark TIA, published December 2011.

PROJECT TRIP DISTRIBUTION AND ASSIGNMENT

Because the Project will be located well within the local neighborhood and will not be located adjacent to a main arterial road, most trips will be to and from the surrounding residences. Most of these trips will also likely be non-motorized trips as the Project has nearby existing pedestrian facilities as well as the New Brighton Middle School. However some trips will also be from further out. 30% of trips will distribute to the north towards Park Avenue leading to Highway 1, and 70% will distribute south towards Bay Avenue.

EXISTING PLUS PROJECT LEVEL OF SERVICE AT STUDY INTERSECTIONS

Traffic operations were evaluated at the study intersections under existing conditions plus traffic generated by the project as seen on **Figure 3**. Results of the analysis are presented in **Table 3**. Locations operating unacceptably are bolded.

As shown in **Table 3**, Intersection #1 – Park Avenue / Kennedy Drive will continue to operate at unacceptable LOS E, and the delay at the intersection remains unchanged with the addition of Project trips due to the small increases in volumes to non-critical movements. During the Saturday Midday, the delay would only increases slightly, but the LOS will remain acceptable at C. Intersection #2, Monterey Avenue / Bay Avenue, would continue to operate at LOS B in the PM peak hour and LOS A during the Saturday peak hour. The delay at the intersection during these analysis periods also remains unchanged with the addition of project trips. Analysis sheets from Synchro are provided in **Appendix C.**

Table 4 – Existing Plus Project Intersection Level of Service Analysis

#	Intersection	Control Type	LOS Standard	Peak Hour	Exist (201	~	Existing Proje	
		1,400	Staridara		Delay	LOS	Delay	LOS
	Kannada Brita / Bada Assaura	AVAGG		Weekday PM	38.4	E	38.4	E
1	Kennedy Drive / Park Avenue	AWSC	С	Weekend Midday	21.1	С	21.3	С
	Manharay Ayanya / Day Ayanya	ANNICO	F	Weekday PM	10.6	В	10.6	В
2	Monterey Avenue / Bay Avenue	AWSC	E	Weekend Midday	9.2	Α	9.2	Α

Notes:

- 1. Analysis performed using HCM 2010 methodologies
- 2. Delay indicated in seconds/vehicle
- 3. Intersections that fall below City standard are shown in **bold**.

CUMULATIVE (2035) CONDITIONS

CUMULATIVE LANE CONFIGURATIONS AND TRAFFIC CONTROL

Per the City's General Plan, the only future roadway improvements or other programmed network improvements in the immediate project area and study intersections have been identified that are expected to be completed by 2035. This includes the extension of Class 2 bike lanes along Monterey Avenue and the installation of a traffic signal at the intersection of Kennedy Drive and Park Avenue. **Figure 3** illustrates the intersection geometry and traffic control assumed in the Cumulative (2035) analysis.

Future projects within the vicinity of the Project include the McGregor Skatepark, located approximately ¾-mile from the Project at the intersection of McGregor Drive and Park Avenue, and the provision of Class 2 bicycle lanes along Monterey Avenue. McGregor Skatepark will be a combined skatepark and dog park and would attract different visitors than those that would use Monterey Avenue Skatepark. Because McGregor Skatepark has no pedestrian facilities within the vicinity, its visitors will also more likely travel by car. With the extension of Class 2 bicycle lanes along Monterey Avenue, on-street parking may be lost. However, these bicycle facilities would increase access to the surrounding neighborhood, New Brighton Middle School, and Monterey Avenue Skatepark.

YEAR 2035 FORECAST MODEL VOLUMES AND CUMULATIVE NO PROJECT LEVEL OF SERVICE AT STUDY INTERSECTIONS

General Plan volumes for the PM peak hour were obtained from the City General Plan EIR and utilized for the analysis. Cumulative volumes are shown in **Figure 3** and analysis sheets from Synchro are provided in **Appendix D.** Volumes for the midday peak hour were calculated by finding the average annual percent growth between existing and cumulative PM peak hour volumes provided in the City General Plan EIR. These calculations are provided in **Appendix F**.

CUMULATIVE PLUS PROJECT LEVEL OF SERVICE AT STUDY INTERSECTIONS

Traffic operations were evaluated at the study intersections under cumulative conditions plus traffic generated by the project as seen on **Figure 3**. Results of the Cumulative No Project and Cumulative Plus Project analyses are presented in **Table 5**.

As shown in **Table 5**, Intersection #1 – Park Avenue / Kennedy Drive will operate acceptably as an signalized intersection at LOS C in both weekday PM and Saturday midday peak hours, with and without project trips. Intersection #2, Monterey Avenue / Bay Avenue, will operate at LOS B in the PM peak hour and during the Saturday midday peak hour. Analysis sheets from Synchro are provided in **Appendix E.**

Table 5 – Cumulative No Project and Cumulative Plus Project Intersection Level of Service Analysis

#	Intersection	Control Type	LOS Standard	Peak Hour	Cum (203		Cumul. (+ Pro	
					Delay	LOS	Delay	LOS
1	Kennedy Drive /	Cienel	,	Weekday PM	33.7	C	33.8	С
1	Park Avenue	Signal	С	Saturday Midday	22.6	В	22.8	С
	Monterey Avenue /	AMSC	_	Weekday PM	13.2	В	13.3	В
2	Bay Avenue	AWSC	E	Saturday Midday	10.2	В	10.2	В

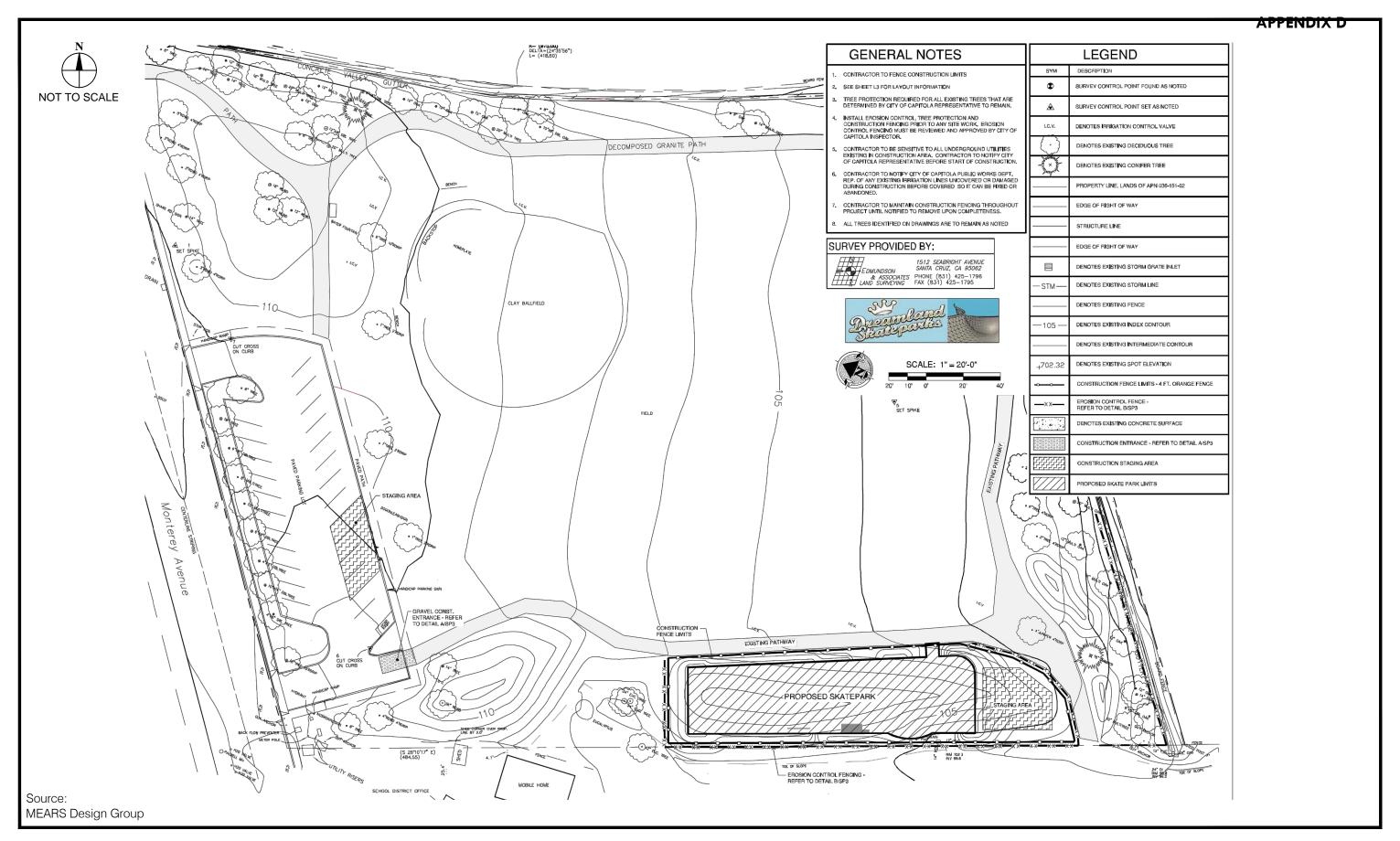
Notes:

- 1. Analysis performed using HCM 2010 methodologies
- 2. Delay indicated in seconds/vehicle
- 3. Intersections that fall below City standard are shown in **bold**.

SUMMARY OF IMPACTS

Based on the results of the traffic analysis and evaluation of the proposed site plan, Intersection #1 – Kennedy Drive / Park Avenue is the only intersection that operates at an unacceptable level of service in existing conditions, with and without the Project. The project traffic does *not* cause the intersection to fall below City standards in either peak hour and therefore does not cause a significant impact that should be mitigated. The intersection will be signalized in cumulative conditions and will operate acceptably at LOS C in both peak hours studied, with and without the Project trips.

APPENDIX D



Source: Google Earth

FV-097005001

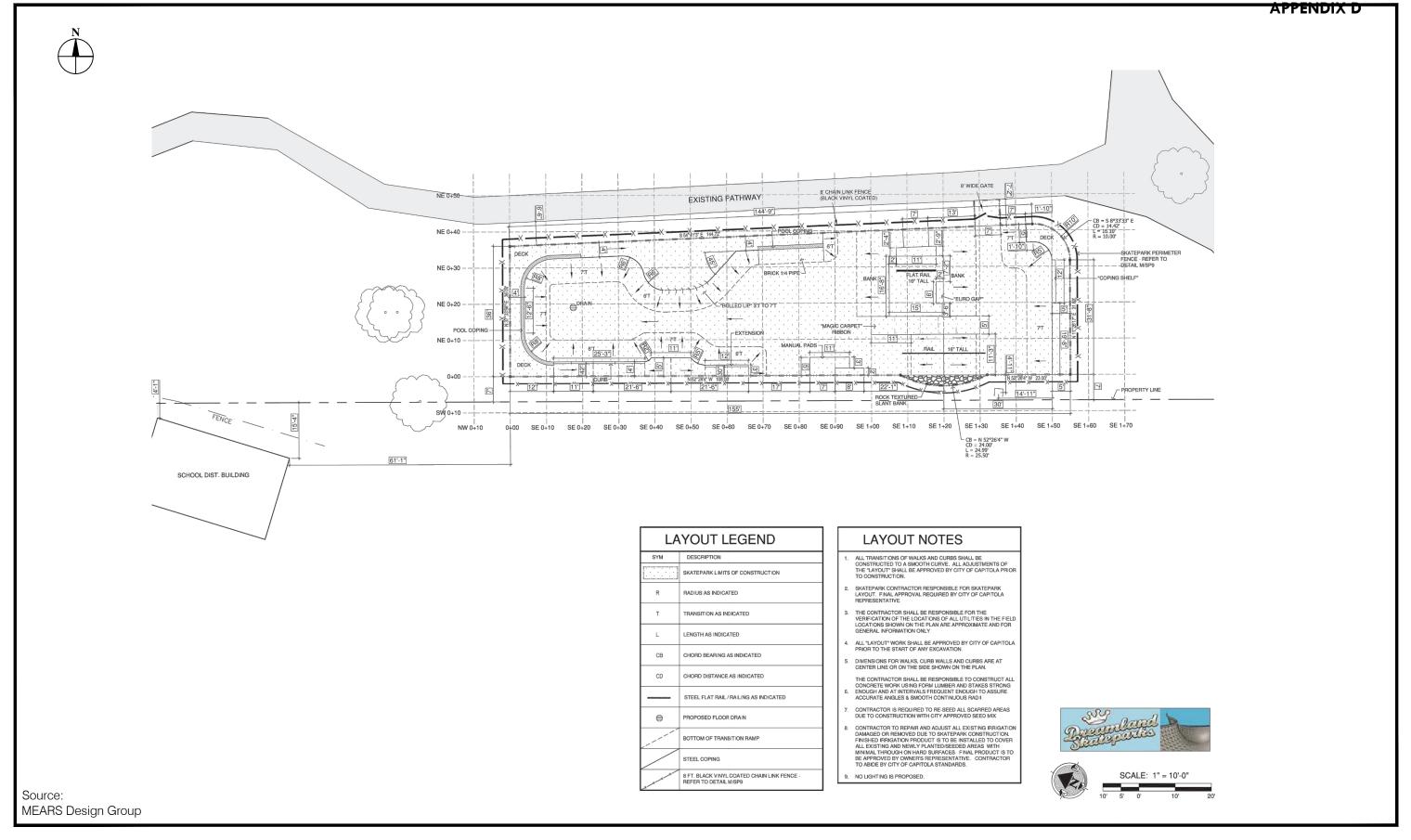


FIGURE 3
EXISTING, PROJECT, AND CUMULATIVE CONDITIONS
PEAK HOUR TURNING MOVEMENT VOLUMES

APPENDICES

- A: INTERSECTION TURNING MOVEMENT VOLUMES NDS/ATD TRAFFIC
- **B: EXISTING TRAFFIC CONDITIONS ANALYSIS SHEETS**
- C: EXISTING PLUS PROJECT TRAFFIC CONDITIONS ANALYSIS SHEETS
- D: CUMULATIVE (2035) TRAFFIC CONDITIONS ANALYSIS SHEETS
- E: CUMULATIVE (2035) PLUS PROPOSED PROJECT TRAFFIC CONDITIONS ANALYSIS SHEETS
- F: CALCULATION OF CUMULATIVE CONDITION MIDDAY PEAK HOUR VOLUMES

APPENDIX A Intersection Turning Movement Volumes NDS/ATD Traffic

APPENDIX D

(916) 771-8700

City of Capitola

Nothing on Bank 1

Nothing on Bank 2

All Vehicles on Unshifted

orders@atdtraffic.com

File Name: 15-7510-001 Monterey Avenue-Bay Avenue.ppd Date: 5/30/2015

Unshifted Count = All Vehicles

Monterey Avenue Monterey Avenue Bay Avenue Eastbound Southbound Westbound Northbound START TIME LEFT THRU RIGHT UTURNS APP.TOTAL Total Uturn Total 12:00 12:15 12:30 12:45 Total 13:00 13:15 13:30 13:45 Total **Grand Total** Apprch % 0.0% 18.7% 81.3% 0.0% 0.0% 0.0% 0.0% 0.0% 89.9% 10.1% 0.0% 0.0% 28.1% 0.0% 71.9% 0.0% Total % 0.0% 3.8% 0.0% 20.4% 0.0% 0.0% 0.0% 0.0% 0.0% 33.1% 0.0% 0.0% 36.8% 12.0% 0.0% 0.0% 42.8% 100.0% 16.6% 3.7% 30.8%

APPENDIX D

(916) 771-8700

City of Capitola All Vehicles on Unshifted

Nothing on Bank 1 Nothing on Bank 2 orders@atdtraffic.com

File Name: 15-7510-001 Monterey Avenue-Bay Avenue.ppd Date: 5/30/2015

Unshifted Count - All Vehicles

									Unshi	fted Count	= All Ve	hicles									
NOON		M	onterey Av	/enue								M	onterey A	venue				Bay Aver	nue		1
PEAK			Southbou	ınd				Westbou	ınd				Northbou	ınd				Eastbou	nd		1
START TIME	LEFT	THRU	RIGHT	UTURNS	APP.TOTAL	LEFT	THRU	RIGHT	UTURNS	APP.TOTAL	LEFT	THRU	RIGHT	UTURNS	APP.TOTAL	LEFT	THRU	RIGHT	UTURNS	APP.TOTAL	Total
Peak Hour An	alysis Fr	om 12:45	to 13:45								-				·						
Peak Hour Fo	r Entire I	ntersectio	n Begins a	at 12:45																	
12:45	0	2	20	0	22	0	0 0 0 0 55 6 0 0 61 12 0 45 0 57						57	140							
13:00	0	7	27	0	34	0	0	0	0	0	46	5	0	0	51	15	0	46	0	61	146
13:15	0	7	25	0	32	0	0	0	0	0	42	3	0	0	45	13	0	39	0	52	129
13:30	0	5	21	0	26	0	0	0	0	0	42	2	0	0	44	18	0	45	0	63	133
Total Volume	0	21	93	0	114	0	0	0	0	0	185	16	0	0	201	58	0	175	0	233	548
% App Total	0.0%	18.4%	81.6%	0.0%		0.0%	0.0%	0.0%	0.0%		92.0%	8.0%	0.0%	0.0%		24.9%	0.0%	75.1%	0.0%		1
PHF	.000	.750	.861	.000	.838	.000	.000	.000	.000	.000	.841	.667	.000	.000	.824	.806	.000	.951	.000	.925	.938

APPENDIX D

(916) 771-8700

City of Capitola All Vehicles on Unshifted

Nothing on Bank 1

Nothing on Bank 2

orders@atdtraffic.com

File Name: 15-7510-001 Kennedy Drive-Park Avenue.ppd

Date: 5/30/2015

Unshifted Count = All Vehicles

_										••	tou oount	- 7 111 7 4	,,,,,,,,,									-	
			Mo	onterey A	venue				Park Ave	nue			M	onterey A	venue				Park Ave	nue			
				Southboo	und		Westbound							Northbou	und				Eastbou	nd			
Ī	START TIME	LEFT	THRU	RIGHT	UTURNS	APP.TOTAL	LEFT THRU RIGHT UTURNS APP.TO				APP.TOTAL	LEFT	THRU	RIGHT	UTURNS	APP.TOTAL	LEFT	THRU	RIGHT	UTURNS	APP.TOTAL	Total	Uturn Total
-	12:00	13	28	1	0	42	46	4	11	0	61	6	33	60	1	100	0	0	1	0	1	204	1
	12:15	11	29	1	0	41	43	3	14	0	60	6	34	58	0	98	2	0	1	0	3	202	0
	12:30	15	32	1	0	48	41	2	12	0	55	2	34	63	0	99	1	1	0	0	2	204	0
	12:45	12	33	2	0	47	51	3	15	0	69	14	44	75	0	133	3	1	0	0	4	253	0
	Total	51	122	5	0	178	181	12	52	0	245	28	145	256	1	430	6	2	2	0	10	863	1
	•						•										•					•	
	13:00	18	33	1	0	52	47	2	12	0	61	11	34	63	0	108	4	1	4	0	9	230	0
	13:15	16	30	1	0	47	49	1	8	0	58	8	35	56	0	99	2	4	1	0	7	211	0
	13:30	16	31	2	0	49	52	1	20	0	73	3	20	66	0	89	3	0	4	0	7	218	0
	13:45	8	35	1	0	44	36	1	13	0	50	6	37	79	0	122	5	5	3	0	13	229	0
	Total	58	129	5	0	192	184	5	53	0	242	28	126	264	0	418	14	10	12	0	36	888	0
	•						•										•					•	
	Grand Total	109	251	10	0	370	365	17	105	0	487	56	271	520	1	848	20	12	14	0	46	1751	1
	Apprch %	29.5%	67.8%	2.7%	0.0%		74.9% 3.5% 21.6% 0.0% 6.6% 32.0% 61.3% 0.1% 43.5% 26.1% 30.4% 0.0%																
	Total %	6.2%	14.3%	0.6%	0.0%	21.1%	20.8%	1.0%	6.0%	0.0%	27.8%	3.2%	15.5%	29.7%	0.1%	48.4%	1.1%	0.7%	0.8%	0.0%	2.6%	100.0%	

APPENDIX D

(916) 771-8700

orders@atdtraffic.com

City of Capitola All Vehicles on Unshifted

Nothing on Bank 1 Nothing on Bank 2 File Name: 15-7510-001 Kennedy Drive-Park Avenue.ppd Date: 5/30/2015

Unshifted Count - All Vehicle

									Unshi	fted Count	= All Ve	hicles									
NOON		Mo	onterey Av	/enue				Park Avei	nue			М	onterey Av	/enue				Park Ave	nue		
PEAK			Southbou	ınd				Westbou	nd				Northbou	ınd				Eastbou	ınd		
START TIME	LEFT	THRU	RIGHT	UTURNS	APP.TOTAL	LEFT	THRU	RIGHT	UTURNS	APP.TOTAL	LEFT	THRU	RIGHT	UTURNS	APP.TOTAL	LEFT	THRU	RIGHT	UTURNS	APP.TOTAL	Total
Peak Hour An	alysis Fro	m 12:45 t	to 13:45		•	-				·					·						
Peak Hour Fo	r Entire In	tersection	n Begins a	at 12:45																	
12:45	23	26	49	0	98	8	19	18	0	45	1	78	42	0	121	34	15	1	0	50	314
13:00	37	26	24	0	87	7	13	14	0	34	1	61	36	0	98	45	14	1	0	60	279
13:15	33	24	24	0	81	8	6	10	0	24	0	63	32	0	95	23	57	0	0	80	280
13:30	33	25	49	0	107	8	6	24	0	38	0	36	38	0	74	34	0	1	0	35	254
Total Volume	126	101	146	0	373	31	44	66	0	141	2	238	148	0	388	136	86	3	0	225	1127
% App Total	33.8%	27.1%	39.1%	0.0%		22.0%	31.2%	46.8%	0.0%		0.5%	61.3%	38.1%	0.0%		60.4%	38.2%	1.3%	0.0%		
PHF	.851	.971	.745	.000	.871	.969	.579	.688	.000	.783	.500	.763	.881	.000	.802	.756	.377	.750	.000	.703	.897

APPENDIX B Synchro Analysis Worksheets Existing Midday, PM

Intersection												
Intersection Delay, s/veh	21.1											
Intersection LOS	С											
Movement	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR
Traffic Vol, veh/h	0	136	86	3	0	31	44	66	0	2	238	148
Future Vol, veh/h	0	136	86	3	0	31	44	66	0	2	238	148
Peak Hour Factor	0.92	0.90	0.90	0.90	0.92	0.90	0.90	0.90	0.92	0.90	0.90	0.90
Heavy Vehicles, %	0.92	0.90	0.90	0.90	0.92	0.90	0.90	0.90	0.92	0.90	0.90	0.90
Mymt Flow	0	151	96	3	0	34	49	73	0	2	264	164
Number of Lanes	0	0	1	1	0	0	1	13	0	0	1	0
Number of Lanes	U	U	'	ı I	U	U	'	ı	U	U	ı	U
Approach		EB				WB				NB		
Opposing Approach		WB				EB				SB		
Opposing Lanes		2				2				2		
Conflicting Approach Left		SB				NB				EB		
Conflicting Lanes Left		2				1				2		
Conflicting Approach Right		NB				SB				WB		
Conflicting Lanes Right		1				2				2		
HCM Control Delay		19.3				12.1				31.3		
HCM LOS		С				В				D		
Lane		NBLn1	EBLn1	EBLn2	WBLn1	WBLn2	SBLn1	SBLn2				
Vol Left, %		1%	61%	0%	41%	0%	56%	0%				
Vol Thru, %		61%	39%	0%	59%	0%	44%	0%				
Vol Right, %		38%	0%	100%	0%	100%	0%	100%				
Sign Control		Stop	Stop	Stop	Stop	Stop	Stop	Stop				
Traffic Vol by Lane		388	222	3	75	66	227	146				
LT Vol		2	136	0	31	0	126	0				
Through Vol		238	86	0	44	0	101	0				
RT Vol		148	0	3	0	66	0	146				
Lane Flow Rate		431	247	3	83	73	252	162				
Geometry Grp		6	7	7	7	7	7	7				
Degree of Util (X)		0.799	0.538	0.006	0.188	0.146	0.509	0.282				
Departure Headway (Hd)		6.672	7.847	6.81	8.119	7.181	7.26	6.26				
Convergence, Y/N		Yes	Yes	Yes	Yes	Yes	Yes	Yes				
Сар		543	459	524	441	497	497	573				
Service Time		4.725	5.606	4.568	5.891	4.953	5.019	4.018				
HCM Lane V/C Ratio		0.794	0.538	0.006	0.188	0.147	0.507	0.283				
HCM Control Delay		31.3	19.4	9.6	12.8	11.2	17.4	11.5				
HCM Lane LOS		D	С	Α	В	В	С	В				
HCM 95th-tile Q		7.6	3.1	0	0.7	0.5	2.8	1.2				

7/16/2015

Intersection						
Intersection Delay, s/veh						
Intersection LOS						
	CDII	CDI	CDT	CDD		
Movement	SBU	SBL	SBT	SBR		
Traffic Vol, veh/h	0	126	101	146		
Future Vol, veh/h	0	126	101	146		
Peak Hour Factor	0.92	0.90	0.90	0.90		
Heavy Vehicles, %	2	2	2	2		
Mvmt Flow	0	140	112	162		
Number of Lanes	0	0	1	1		
		C.D.				
Approach		SB				
Opposing Approach		NB				
Opposing Lanes		1				
Conflicting Approach Left		WB				
Conflicting Lanes Left		2				
Conflicting Approach Right		EB				
Conflicting Lanes Right		2				
HCM Control Delay		15.1				
HCM LOS		С				
Lane						

Intersection									
Intersection Delay, s/veh	9.2								
Intersection LOS	Α								
Movement	EBU EB	_	EBR	NBU	NBL	NBT	SBU	SBT	SBR
Traffic Vol, veh/h	0 5	3	175	0	185	16	0	21	93
Future Vol, veh/h	0 5	3	175	0	185	16	0	21	93
Peak Hour Factor	0.92 0.94	1	0.94	0.92	0.94	0.94	0.92	0.94	0.94
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2
Mvmt Flow	0 6	2	186	0	197	17	0	22	99
Number of Lanes	0	1	0	0	0	1	0	1	0
Approach	El	3			NB			SB	
Opposing Approach					SB			NB	
Opposing Lanes)			1			1	
Conflicting Approach Left	SI				EB				
Conflicting Lanes Left		1			1			0	
Conflicting Approach Right	NE	3						EB	
Conflicting Lanes Right		1			0			1	
HCM Control Delay	9.:	2			9.8			8	
HCM LOS	,				Α			А	
Lane	NBLn	I EBLn1	SBLn1						
Vol Left, %	929	5 25%	0%						
Vol Thru, %	89	6 0%	18%						
Vol Right, %	0%	5 75%	82%						
Sign Control	Sto	Stop	Stop						
Traffic Vol by Lane	20	1 233	114						
LT Vol	18	5 58	0						
Through Vol	1	6 0	21						
RT Vol) 175	93						
Lane Flow Rate	21	1 248	121						
Geometry Grp		1 1	1						
Degree of Util (X)	0.28		0.144						
Departure Headway (Hd)	4.80		4.26						
Convergence, Y/N	Ye	s Yes	Yes						
Cap	74		839						
Service Time	2.84		2.3						
HCM Lane V/C Ratio	0.28		0.144						
HCM Control Delay	9.		8						
HCM Lane LOS	1		Α						
HCM 95th-tile Q	1.:	2 1.2	0.5						

Intersection												
Intersection Delay, s/veh	38.4											
Intersection LOS	Е											
Movement	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR
Traffic Vol, veh/h	0	178	113	3	0	41	55	89	0	4	300	189
Future Vol, veh/h	0	178	113	3	0	41	55	89	0	4	300	189
Peak Hour Factor	0.92	0.96	0.96	0.96	0.92	0.96	0.96	0.96	0.92	0.96	0.96	0.96
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mymt Flow	0	185	118	3	0	43	57	93	0	4	313	197
Number of Lanes	0	0	110	1	0	0	1	1	0	0	1	0
runiber of Edites		0	'	<u>'</u>	- U	- U	'	'	U	- U	'	J
Approach		EB				WB				NB		
Opposing Approach		WB				EB				SB		
Opposing Lanes		2				2				2		
Conflicting Approach Left		SB				NB				EB		
Conflicting Lanes Left		2				1				2		
Conflicting Approach Right		NB				SB				WB		
Conflicting Lanes Right		1				2				2		
HCM Control Delay		29.6				13.8				69		
HCM LOS		D				В				F		
						_				·		
Lane		NBLn1	EBLn1	EBLn2	WBLn1	WBLn2	SBLn1	SBLn2				
Vol Left, %		1%	61%	0%	43%	0%	54%	0%				
Vol Thru, %		61%	39%	0%	57%	0%	46%	0%				
Vol Right, %		38%	0%	100%	0%	100%	0%	100%				
Sign Control		Stop	Stop	Stop	Stop	Stop	Stop	Stop				
Traffic Vol by Lane		493	291	3 3	310p	310p	296	310p				
LT Vol		473	178	0	41	0	161	0				
Through Vol		300	113	0	55	0	135	0				
RT Vol		189	0	3	0	89	0	182				
Lane Flow Rate		514	303	3	100	93	308	190				
Geometry Grp		6	7	7	7	73	7	7				
Degree of Util (X)		1	0.715	0.006	0.249	0.206	0.684	0.374				
Departure Headway (Hd)		7.578	8.497	7.453	8.959	8.006	7.984	7.102				
Convergence, Y/N		Yes	Yes	Yes	Yes	Yes	Yes	Yes				
Cap		483	427	480	402	447	450	510				
Service Time		5.582	6.201	5.196	6.689	5.776	5.774	4.802				
HCM Lane V/C Ratio		1.064	0.71	0.006	0.249	0.208	0.684	0.373				
HCM Control Delay		69	29.8	10.2	14.6	12.9	26.5	14				
HCM Lane LOS		F	D	В	В	В	D	В				
HCM 95th-tile Q		13.3	5.5	0	1	0.8	5	1.7				

7/16/2015

ntersection				
Intersection Delay, s/veh				
Intersection LOS				
Intersection LOS				
Movement	SBU	SBL	SBT	SBR
Traffic Vol, veh/h	0	161	135	182
Future Vol, veh/h	0	161	135	182
Peak Hour Factor	0.92	0.96	0.96	0.96
Heavy Vehicles, %	2	2	2	2
Mvmt Flow	0	168	141	190
Number of Lanes	0	0	1	1
		0.5		
Approach		SB		
Opposing Approach		NB		
Opposing Lanes		1		
Conflicting Approach Left		WB		
Conflicting Lanes Left		2		
Conflicting Approach Right		EB		
Conflicting Lanes Right		2		
HCM Control Delay		21.7		
HCM LOS		С		
Lane				
Lane				

Intersection									
Intersection Delay, s/veh	10.6								
Intersection LOS	В								
Movement	EBU EBL		EBR	NBU	NBL	NBT	SBU	SBT	SBR
Traffic Vol, veh/h	0 136		194	0	169	49	0	35	122
Future Vol, veh/h	0 136		194	0	169	49	0	35	122
Peak Hour Factor	0.92 0.95		0.95	0.92	0.95	0.95	0.92	0.95	0.95
Heavy Vehicles, %	2 2		2	2	2	2	2	2	2
Mvmt Flow	0 143		204	0	178	52	0	37	128
Number of Lanes	0 1		0	0	0	1	0	1	0
Approach	EB				NB			SB	
Opposing Approach					SB			NB	
Opposing Lanes	(1			1	
Conflicting Approach Left	SE				EB				
Conflicting Lanes Left	1				1			0	
Conflicting Approach Right	NE	1						EB	
Conflicting Lanes Right	1				0			1	
HCM Control Delay	11.3				10.7			8.9	
HCM LOS	Е	1			В			Α	
Lane	NBLn1	EBLn1	SBLn1						
Vol Left, %	78%	41%	0%						
Vol Thru, %	22%	0%	22%						
Vol Right, %	0%	59%	78%						
Sign Control	Stop	Stop	Stop						
Traffic Vol by Lane	218	330	157						
LT Vol	169	136	0						
Through Vol	49	0	35						
RT Vol	(122						
Lane Flow Rate	229	347	165						
Geometry Grp	1		1						
Degree of Util (X)	0.326		0.211						
Departure Headway (Hd)	5.114		4.6						
Convergence, Y/N	Yes		Yes						
Сар	698		773						
Service Time	3.184		2.673						
HCM Lane V/C Ratio	0.328		0.213						
HCM Control Delay	10.7		8.9						
HCM Lane LOS	E	В	Α						
HCM 95th-tile Q	1.4	2.3	0.8						

APPENDIX C Synchro Analysis Worksheets Existing+Project Midday, PM

•											
Intersection											
Intersection Delay, s/veh	21.3										
Intersection LOS	C										
		EDT	500	MDII	14/51	MOT	MOD	NDII	NDI	NDT	NDD
Movement	EBU EBI		EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR
Traffic Vol, veh/h	0 138		3	0	31	44	66	0	2	238	148
Future Vol, veh/h	0 138		3	0	31	44	66	0	2	238	148
Peak Hour Factor	0.92 0.90		0.90	0.92	0.90	0.90	0.90	0.92	0.90	0.90	0.90
Heavy Vehicles, %		2 2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0 153		3	0	34	49	73	0	2	264	164
Number of Lanes	0 () 1	1	0	0	1	1	0	0	1	0
Approach	EF	3			WB				NB		
Opposing Approach	WE	3			EB				SB		
Opposing Lanes		2			2				2		
Conflicting Approach Left	SE				NB				EB		
Conflicting Lanes Left		2			1				2		
Conflicting Approach Right	NE				SB				WB		
Conflicting Lanes Right		1			2				2		
HCM Control Delay	19.5				12.1				31.6		
HCM LOS	(В				D		
		_									
Long	NDI m	I FDL 51	EDI 50	WDI n1	WDLs2	CDI n1	CDI 20				
Lane	NBLn ²		EBLn2	WBLn1	WBLn2	SBLn1	SBLn2				
Vol Left, %	1%		0%	41%	0%	56%	0%				
Vol Thru, %	61%		0%	59%	0%	44%	0%				
Vol Right, %	38%		100%	0%	100%	0%	100%				
Sign Control	Stop		Stop	Stop	Stop	Stop	Stop				
Traffic Vol by Lane	388		3	75	66	227	148				
LT Vol		2 138	0	31	0	126	0				
Through Vol	238		0	44	0	101	0				
RT Vol	148		3	0	66	0	148				
Lane Flow Rate	431		3	83	73	252	164				
Geometry Grp		5 7	7	7	7	7	7				
Degree of Util (X)	0.80		0.006	0.188	0.147	0.51	0.287				
Departure Headway (Hd)	6.69		6.82	8.139	7.201	7.277	6.276				
Convergence, Y/N	Ye		Yes	Yes	Yes	Yes	Yes				
Cap	539		523	440	496	494	571				
Service Time	4.742		4.579	5.91	4.971	5.035	4.034				
HCM Lane V/C Ratio	0.0		0.006	0.189	0.147	0.51	0.287				
HCM Control Delay	31.6		9.6	12.8	11.2	17.4	11.6				
LICMILATALOC	Г) C	Α	В	В	С	В				
HCM Lane LOS HCM 95th-tile Q	7.:		0		0.5	2.9	1.2				

7/16/2015

Intersection						
Intersection Delay, s/veh						
Intersection LOS						
	CDII	CDI	CDT	CDD		
Movement	SBU	SBL	SBT	SBR		
Traffic Vol, veh/h	0	126	101	148		
Future Vol, veh/h	0	126	101	148		
Peak Hour Factor	0.92	0.90	0.90	0.90		
Heavy Vehicles, %	2	2	2	2		
Mvmt Flow	0	140	112	164		
Number of Lanes	0	0	1	1		
		C.D.				
Approach		SB				
Opposing Approach		NB				
Opposing Lanes		1				
Conflicting Approach Left		WB				
Conflicting Lanes Left		2				
Conflicting Approach Right		EB				
Conflicting Lanes Right		2				
HCM Control Delay		15.1				
HCM LOS		С				
Lane						

Intersection	0.0									
Intersection Delay, s/veh	9.2									
Intersection LOS	А									
Movement	EBU	EBL		EBR	NBU	NBL	NBT	SBU	SBT	SBR
Traffic Vol, veh/h	0	59		175	0	185	19	0	23	94
Future Vol, veh/h	0	59		175	0	185	19	0	23	94
Peak Hour Factor	0.92	0.94		0.94	0.92	0.94	0.94	0.92	0.94	0.94
Heavy Vehicles, %	2	2		2	2	2	2	2	2	2
Mvmt Flow	0	63		186	0	197	20	0	24	100
Number of Lanes	0	1		0	0	0	1	0	1	0
Approach		EB				NB			SB	
Opposing Approach						SB			NB	
Opposing Lanes		0				1			1	
Conflicting Approach Left		SB				EB				
Conflicting Lanes Left		1				1			0	
Conflicting Approach Right		NB							EB	
Conflicting Lanes Right		1				0			1	
HCM Control Delay		9.2				9.8			8.1	
HCM LOS		Α				Α			Α	
Lane	NE	3Ln1	EBLn1	SBLn1						
Vol Left, %		91%	25%	0%						
Vol Thru, %		9%	0%	20%						
Vol Right, %		0%	75%	80%						
Sign Control		Stop	Stop	Stop						
Traffic Vol by Lane		204	234	117						
LT Vol		185	59	0						
Through Vol		19	0	23						
RT Vol		0	175	94						
Lane Flow Rate		217	249	124						
Geometry Grp		1	1	1						
Degree of Util (X)		0.29	0.299	0.148						
Departure Headway (Hd)	4	.811	4.33	4.276						
Convergence, Y/N		Yes	Yes	Yes						
Cap		747	829	836						
Service Time		.849	2.359	2.316						
HCM Lane V/C Ratio		0.29	0.3	0.148						
HCM Control Delay		9.8	9.2	8.1						
HCM Lane LOS		A 1.2	Α	Α						
HCM 95th-tile Q			1.3	0.5						

Intersection												
Intersection Delay, s/veh	38.4											
Intersection LOS	Е											
Movement	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR
Traffic Vol, veh/h	0	179	113	3	0	41	55	89	0	4	300	189
Future Vol, veh/h	0	179	113	3	0	41	55	89	0	4	300	189
Peak Hour Factor	0.92	0.96	0.96	0.96	0.92	0.96	0.96	0.96	0.92	0.96	0.96	0.96
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	186	118	3	0	43	57	93	0	4	313	197
Number of Lanes	0	0	1	1	0	0	1	1	0	0	1	0
Approach		EB				WB				NB		
Opposing Approach		WB				EB				SB		
Opposing Lanes		2				2				2		
Conflicting Approach Left		SB				NB				EB		
Conflicting Lanes Left		2				1				2		
Conflicting Approach Right		NB				SB				WB		
Conflicting Lanes Right		1				2				2		
HCM Control Delay		29.8				13.8				69		
HCM LOS		D				В				F		
Lane	N	IBLn1	EBLn1	EBLn2	WBLn1	WBLn2	SBLn1	SBLn2				
Vol Left, %		1%	61%	0%	43%	0%	54%	0%				
Vol Thru, %		61%	39%	0%	57%	0%	46%	0%				
Vol Right, %		38%	0%	100%	0%	100%	0%	100%				
Sign Control		Stop	Stop	Stop	Stop	Stop	Stop	Stop				
Traffic Vol by Lane		493	292	3	96	89	296	183				
LT Vol		4	179	0	41	0	161	0				
Through Vol		300	113	0	55	0	135	0				
RT Vol		189	0	3	0	89	0	183				
Lane Flow Rate		514	304	3	100	93	308	191				
Geometry Grp		6	7	7	7	7	7	7				
Degree of Util (X)		1	0.718	0.006	0.249	0.206	0.684	0.376				
Departure Headway (Hd)		7.586	8.501	7.456	8.966	8.013	7.99	7.109				
Convergence, Y/N		Yes	Yes	Yes	Yes	Yes	Yes	Yes				
Cap		483	429	480	402	447	450	509				
Service Time		5.59	6.202	5.197	6.696	5.783	5.781	4.809				
HCM Lane V/C Ratio		1.064	0.709	0.006	0.249	0.208	0.684	0.375				
HCM Control Delay		69	30	10.2	14.7	12.9	26.5	14				
HCM Lane LOS		F	D 5.6	B 0	B 1	B 0.8	D 5	B 1.7				
HCM 95th-tile Q		13.3										

7/16/2015

Intersection						
Intersection Delay, s/veh						
Intersection LOS						
	CDII	CDI	CDT	CDD		
Movement	SBU	SBL	SBT	SBR		
Traffic Vol, veh/h	0	161	135	183		
Future Vol, veh/h	0	161	135	183		
Peak Hour Factor	0.92	0.96	0.96	0.96		
Heavy Vehicles, %	2	2	2	2		
Mvmt Flow	0	168	141	191		
Number of Lanes	0	0	1	1		
Approach		SB				
Opposing Approach		NB				
Opposing Lanes		1				
Conflicting Approach Left		WB				
Conflicting Lanes Left		2				
Conflicting Approach Right		EB				
Conflicting Lanes Right		2				
HCM Control Delay		21.7				
HCM LOS		С				
Lane						

Intersection									
Intersection Delay, s/veh	10.6								
Intersection LOS	В								
			500	NDII	NDI	NDT	0011	ODT	000
Movement	EBU EB		EBR	NBU	NBL	NBT	SBU	SBT	SBR
Traffic Vol, veh/h	0 13		194	0	169	51	0	37	123
Future Vol, veh/h	0 13		194	0	169	51	0	37	123
Peak Hour Factor	0.92 0.9		0.95	0.92	0.95	0.95	0.92	0.95	0.95
Heavy Vehicles, %		2	2	2	2	2	2	2	2
Mvmt Flow	0 14	4	204	0	178	54	0	39	129
Number of Lanes	0	1	0	0	0	1	0	1	0
Approach	Е	3			NB			SB	
Opposing Approach					SB			NB	
Opposing Lanes)			1			1	
Conflicting Approach Left	S				EB				
Conflicting Lanes Left		1			1			0	
Conflicting Approach Right	N	-			•			EB	
Conflicting Lanes Right		1			0			1	
HCM Control Delay	11.	•			10.7			9	
HCM LOS		3			В			A	
TIOM EOO	1	,			<u> </u>			,,	
	NDI	4 EDI 4	CDL 4						
Lane	NBLn		SBLn1						
Vol Left, %	779		0%						
Vol Thru, %	239		23%						
Vol Right, %	09		77%						
Sign Control	Sto		Stop						
Traffic Vol by Lane	22		160						
LT Vol	16		0						
Through Vol	5		37						
RT Vol) 194	123						
Lane Flow Rate	23	2 348	168						
Geometry Grp		1 1	1						
Degree of Util (X)	0.32		0.216						
Departure Headway (Hd)	5.1		4.612						
Convergence, Y/N	Ye		Yes						
Cap	69		771						
Service Time	3.19		2.686						
HCM Lane V/C Ratio	0.33		0.218						
HCM Control Delay	10.	7 11.4	9						
HCM Lane LOS		B B	Α						
HCM 95th-tile Q	1.	4 2.3	0.8						

APPENDIX D Synchro Analysis Worksheets Cumulative No Project Midday, PM

	•	→	*	•	←	4	1	†	~	/	↓	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			र्स	7		4	7	7	f	
Traffic Volume (veh/h)	219	138	3	34	46	106	2	382	237	202	112	153
Future Volume (veh/h)	219	138	3	34	46	106	2	382	237	202	112	153
Number	7	4	14	3	8	18	5	2	12	1	6	16
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	(
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1900	1863	1900	1900	1863	1863	1900	1863	1863	1863	1863	1900
Adj Flow Rate, veh/h	243	153	3	38	51	118	2	424	263	224	124	170
Adj No. of Lanes	0	1	0	0	1	1	0	1	1	1	1	C
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	287	180	4	85	114	294	70	462	566	292	286	392
Arrive On Green	0.26	0.26	0.26	0.11	0.11	0.11	0.25	0.25	0.25	0.08	0.40	0.40
Sat Flow, veh/h	1100	692	14	779	1045	1583	2	1859	1583	1774	713	977
Grp Volume(v), veh/h	399	0	0	89	0	118	426	0	263	224	0	294
Grp Sat Flow(s),veh/h/ln	1805	0	0	1824	0	1583	1861	0	1583	1774	0	1690
Q Serve(g_s), s	11.0	0.0	0.0	2.4	0.0	3.4	1.6	0.0	6.7	4.0	0.0	6.6
Cycle Q Clear(g_c), s	11.0	0.0	0.0	2.4	0.0	3.4	11.7	0.0	6.7	4.0	0.0	6.6
Prop In Lane	0.61	0.0	0.01	0.43	0.0	1.00	0.00	0.0	1.00	1.00	0.0	0.58
Lane Grp Cap(c), veh/h	471	0	0	199	0	294	531	0	566	292	0	678
V/C Ratio(X)	0.85	0.00	0.00	0.45	0.00	0.40	0.80	0.00	0.46	0.77	0.00	0.43
Avail Cap(c_a), veh/h	552	0	0	557	0	605	531	0	566	292	0	678
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	0.00	1.00	0.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00
Uniform Delay (d), s/veh	18.4	0.0	0.0	21.8	0.0	18.8	19.2	0.0	13.0	15.8	0.0	11.4
Incr Delay (d2), s/veh	10.5	0.0	0.0	1.6	0.0	0.9	8.6	0.0	0.6	11.6	0.0	0.4
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	6.8	0.0	0.0	1.3	0.0	1.6	7.2	0.0	3.5	2.2	0.0	3.1
LnGrp Delay(d),s/veh	28.8	0.0	0.0	23.4	0.0	19.7	27.8	0.0	13.6	27.5	0.0	11.8
LnGrp LOS	С			С		В	С		В	С		В
Approach Vol, veh/h		399			207			689			518	
Approach Delay, s/veh		28.8			21.3			22.4			18.6	
Approach LOS		С			С			С			В	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs	1	2	J	4	J	6	,	8				
Phs Duration (G+Y+Rc), s	8.0	17.0		17.7		25.0		9.7				
· , , , , , , , , , , , , , , , , , , ,	4.0					4.0		4.0				
Change Period (Y+Rc), s	4.0	4.0 13.0		4.0 16.0		21.0		16.0				
Max Green Setting (Gmax), s								5.4				
Max Q Clear Time (g_c+l1), s Green Ext Time (p_c), s	6.0	13.7 0.0		13.0 0.7		8.6 4.5		0.6				
Intersection Summary	3.0	3.0		J.,				3.0				
HCM 2010 Ctrl Delay			22.6									
HCM 2010 Cm Delay			22.6 C									
			C									
Notes	avol to b	a loca H-	n nhass	nov ~===								
User approved pedestrian inter	vai 10 06	e iess ina	n pnase r	nax greel	1.							

Capitola Skateboard Park 12:00 pm 5/30/2015 Cumulative Conditions Kimley-Horn

Intersection									
Intersection Delay, s/veh	10.2								
Intersection LOS	В								
Movement	EBU EBI		EBR	NBU	NBL	NBT	SBU	SBT	SBR
Traffic Vol, veh/h	0 70		223	0	220	19	0	27	111
Future Vol, veh/h	0 70		223	0	220	19	0	27	111
Peak Hour Factor	0.92 0.94		0.94	0.92	0.94	0.94	0.92	0.94	0.94
Heavy Vehicles, %	2 2		0.94	0.92	0.94	2	2	2	0.94
Mvmt Flow	0 7		237	0	234	20	0	29	118
Number of Lanes	0 /		0	0	0	1	0	1	0
Number of Lanes	U		U	U	U	1	U	<u> </u>	U
Approach	Ef	3			NB			SB	
Opposing Approach					SB			NB	
Opposing Lanes	()			1			1	
Conflicting Approach Left	SE				EB				
Conflicting Lanes Left					1			0	
Conflicting Approach Right	NE	}						EB	
Conflicting Lanes Right					0			1	
HCM Control Delay	10.4	1			10.8			8.6	
HCM LOS	E	}			В			Α	
Lane	NBLn	EBLn1	SBLn1						
Vol Left, %	929		0%						
Vol Thru, %	89		20%						
Vol Right, %	0%		80%						
Sign Control	Stop		Stop						
Traffic Vol by Lane	239		138						
LT Vol	220		0						
Through Vol	19		27						
RT Vol) 223	111						
Lane Flow Rate	254		147						
Geometry Grp		1 1	1						
Degree of Util (X)	0.354	0.388	0.183						
Departure Headway (Hd)	5.00		4.496						
Convergence, Y/N	Yes		Yes						
Cap	714		791						
Service Time	3.068	3 2.527	2.565						
HCM Lane V/C Ratio	0.356		0.186						
HCM Control Delay	10.8		8.6						
HCM Lane LOS	E		Α						
HCM 95th-tile Q	1.0	5 1.8	0.7						

	•	→	*	•	←	4	1	†	~	/	↓	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			र्स	7		4	7	7	f	
Traffic Volume (veh/h)	201	137	6	85	60	314	8	397	294	310	165	185
Future Volume (veh/h)	201	137	6	85	60	314	8	397	294	310	165	185
Number	7	4	14	3	8	18	5	2	12	1	6	16
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	(
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1900	1863	1900	1900	1863	1863	1900	1863	1863	1863	1863	1900
Adj Flow Rate, veh/h	212	144	6	89	63	331	8	418	309	326	174	195
Adj No. of Lanes	0	1	0	0	1	1	0	1	1	1	1	C
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	265	180	8	113	80	339	68	460	565	337	344	385
Arrive On Green	0.25	0.25	0.25	0.11	0.11	0.11	0.25	0.25	0.25	0.11	0.43	0.43
Sat Flow, veh/h	1057	718	30	1060	750	1583	11	1842	1583	1774	803	900
Grp Volume(v), veh/h	362	0	0	152	0	331	426	0	309	326	0	369
Grp Sat Flow(s), veh/h/ln	1805	0	0	1810	0	1583	1853	0	1583	1774	0	1704
Q Serve(g_s), s	10.5	0.0	0.0	4.6	0.0	6.0	3.1	0.0	8.7	6.0	0.0	8.9
Cycle Q Clear(g_c), s	10.5	0.0	0.0	4.6	0.0	6.0	12.5	0.0	8.7	6.0	0.0	8.9
Prop In Lane	0.59	0.0	0.02	0.59	0.0	1.00	0.02	0.0	1.00	1.00	0.0	0.53
Lane Grp Cap(c), veh/h	453	0	0	194	0	339	528	0	565	337	0	729
V/C Ratio(X)	0.80	0.00	0.00	0.79	0.00	0.98	0.81	0.00	0.55	0.97	0.00	0.51
Avail Cap(c_a), veh/h	740	0	0	194	0	339	528	0	565	337	0	729
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	0.00	1.00	0.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00
Uniform Delay (d), s/veh	19.7	0.0	0.0	24.4	0.0	21.9	20.5	0.0	14.4	16.9	0.0	11.7
Incr Delay (d2), s/veh	3.3	0.0	0.0	18.8	0.0	42.6	9.0	0.0	1.1	40.2	0.0	0.6
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	5.6	0.0	0.0	3.3	0.0	9.1	7.7	0.0	4.6	7.2	0.0	4.2
LnGrp Delay(d),s/veh	23.0	0.0	0.0	43.3	0.0	64.5	29.5	0.0	15.5	57.1	0.0	12.3
LnGrp LOS	С			D		E	С		В	E		В
Approach Vol, veh/h		362			483			735			695	
Approach Delay, s/veh		23.0			57.8			23.6			33.3	
Approach LOS		С			E			С			С	
Timer	1	2	3	4	5	6	7	8				
	1	2	J		J			8				
Assigned Phs Phs Duration (C. V. Pa) s				10.1		6						
Phs Duration (G+Y+Rc), s	10.0	18.0		18.1		28.0		10.0				
Change Period (Y+Rc), s	4.0	4.0		4.0		4.0		4.0				
Max Green Setting (Gmax), s	6.0	14.0		23.0		24.0		6.0				
Max Q Clear Time (g_c+l1), s Green Ext Time (p_c), s	8.0	14.5		12.5 1.6		10.9		8.0				
	0.0	0.0		1.0		5.2		0.0				
Intersection Summary			22.7									
HCM 2010 Ctrl Delay			33.7									
HCM 2010 LOS			С									
Notes												
User approved pedestrian inter	rval to be	e less tha	n phase r	nax gree	n							

Capitola Skateboard Park 4:00 pm 5/30/2015 Cumulative Conditions Kimley-Horn

Intersection									
Intersection Delay, s/veh	13.2								
Intersection LOS	В								
Movement	EBU EBL		EBR	NBU	NBL	NBT	SBU	SBT	SBR
Traffic Vol, veh/h	0 172		246	0	206	60	0	45	140
Future Vol, veh/h	0 172		246	0	206	60	0	45	140
Peak Hour Factor	0.92 0.95		0.95	0.92	0.95	0.95	0.92	0.95	0.95
Heavy Vehicles, %	2 2		2	2	2	2	2	2	2
Mvmt Flow	0 181		259	0	217	63	0	47	147
Number of Lanes	0 1		0	0	0	1	0	1	0
Approach	EB				NB			SB	
Opposing Approach					SB			NB	
Opposing Lanes	C				1			1	
Conflicting Approach Left	SB				EB				
Conflicting Lanes Left	1				1			0	
Conflicting Approach Right	NB							EB	
Conflicting Lanes Right	1				0			1	
HCM Control Delay	14.9				12.7			10	
HCM LOS	В				В			Α	
Lane	NBLn1	EBLn1	SBLn1						
Vol Left, %	77%	41%	0%						
Vol Thru, %	23%	0%	24%						
Vol Right, %	0%	59%	76%						
Sign Control	Stop	Stop	Stop						
Traffic Vol by Lane	266	418	185						
LT Vol	206	172	0						
Through Vol	60	0	45						
RT Vol	O	246	140						
Lane Flow Rate	280	440	195						
Geometry Grp	1	1	1						
Degree of Util (X)	0.432		0.276						
Departure Headway (Hd)	5.549		5.096						
Convergence, Y/N	Yes		Yes						
Сар	652		707						
Service Time	3.557		3.107						
HCM Lane V/C Ratio	0.429		0.276						
HCM Control Delay	12.7	14.9	10						
HCM Lane LOS HCM 95th-tile Q	B 2.2		A 1.1						

APPENDIX E Synchro Analysis Worksheets Cumulative+Project Midday, PM

Initial Q (Qb), veh Ped-Bike Adj(A_pbT) 1.0 Parking Bus, Adj 1.0 Adj Sat Flow, veh/h/In 190 Adj Flow Rate, veh/h 24 Adj No. of Lanes Peak Hour Factor 0.9 Percent Heavy Veh, % Cap, veh/h 28 Arrive On Green 0.2 Sat Flow, veh/h 110 Grp Volume(v), veh/h 110 Grp Sat Flow(s),veh/h/In 180 Q Serve(g_s), s 11. Cycle Q Clear(g_c), s 11. Prop In Lane 0.6 Lane Grp Cap(c), veh/h 47 V/C Ratio(X) 0.8 Avail Cap(c_a), veh/h 55 HCM Platoon Ratio 1.0 Upstream Filter(I) 1.0 Uniform Delay (d), s/veh 18. Incr Delay (d2), s/veh 10. Initial Q Delay(d3),s/veh 6. %ile BackOfQ(50%),veh/In 6.	21 138 21 138 7 2 0 0 00 00 1.00 00 1863 66 153 0 0 2 2 39 186 02 0 05 683 02 0 05 683 02 0 05 683 02 0 05 683 03 0 06 0 06 0 07 0 08 0 08 0 09 0 09 0 09 0 09 0 09 0 09	3 3 3 4 14 0 0 1.00 1.00 1.00 1.00 3 0 0.90 2 2 0 4 4 0 0.26 7 13 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	WBL 34 34 34 3 0 1.00 1.00 1900 38 0 0.90 2 85 0.11 779 89 1824 2.4 0.43 199 0.45	WBT 46 46 8 0 1.00 1863 51 1 0.90 2 114 0.11 1045 0 0.0 0.0 0.0 0.0	WBR 106 106 18 0 1.00 1.00 1863 118 1 0.90 2 293 0.11 1583 118 1583 3.4 3.4 1.00 293 0.40	NBL 2 2 5 0 1.00 1.00 1900 2 0 0.90 2 69 0.25 2 426 1861 1.6 11.7 0.00 530	NBT 382 382 2 0 1.00 1863 424 1 0.90 2 461 0.25 1859 0 0.0 0.0 0.0	NBR 237 237 12 0 1.00 1.00 1863 263 1 0.90 2 565 0.25 1583 263 1583 6.7 6.7 1.00	SBL 202 202 1 0 1.00 1.00 1863 224 1 0.90 2 291 0.08 1774 224 1774 4.0 4.0 1.00	SBT 112 112 6 0 1.00 1863 124 1 0.90 2 283 0.40 708 0 0 0.0 0.0	SBR 155 166 0 1.00 1.00 1900 172 0 0.90 2 393 0.40 982 296 1689 6.7 6.7
Traffic Volume (veh/h) Future Volume (veh/h) Petuture Volume (veh/h) Ped-Bike Adj(A_pbT) Parking Bus, Adj Adj Sat Flow, veh/h/ln Adj Flow Rate, veh/h Adj No. of Lanes Peak Hour Factor Percent Heavy Veh, % Cap, veh/h Grp Volume(v), veh/h Grp Sat Flow(s), veh/h/ln Q Serve(g_s), s Cycle Q Clear(g_c), s Prop In Lane Lane Grp Cap(c), veh/h HCM Platoon Ratio Upstream Filter(l) Uniform Delay (d2), s/veh lnGrp LOS Approach Vol, veh/h 22 Approach Vol, veh/h 23 Approach Vol, veh/h 24 Adj No. of Lanes 0.9 25 26 27 28 28 29 29 29 20 Approach Vol, veh/h	21 138 21 138 27 4 0 0 00 100 00 1.00 00 1863 16 153 0	3 3 3 4 14 0 0 1.00 1.00 1.00 3 3 0 0.90 2 2 2 0 4 0 0.26 7 13 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	34 3 0 1.00 1.00 1900 38 0 0.90 2 85 0.11 779 89 1824 2.4 0.43 199 0.45	46 46 8 0 1.00 1863 51 1 0.90 2 114 0.11 1045 0 0.0	106 106 18 0 1.00 1.00 1863 118 1 0.90 2 293 0.11 1583 118 1583 3.4 3.4 1.00 293	2 5 0 1.00 1.00 1900 2 0 0.90 2 69 0.25 2 426 1861 1.6 11.7 0.00	382 382 2 0 1.00 1863 424 1 0.90 2 461 0.25 1859 0 0 0.0 0.0	237 237 12 0 1.00 1.00 1863 263 1 0.90 2 565 0.25 1583 263 1583 6.7 6.7	202 202 1 0 1.00 1.00 1863 224 1 0.90 2 291 0.08 1774 224 1774 4.0 4.0	112 112 6 0 1.00 1863 124 1 0.90 2 283 0.40 708 0 0	155 16 0 1.00 1.00 1900 172 0 0.90 2 393 0.40 982 296 6.7 6.7
Traffic Volume (veh/h) Future Volume (veh/h) Petuture Volume (veh/h) Ped-Bike Adj(A_pbT) Parking Bus, Adj Adj Sat Flow, veh/h/ln Adj Flow Rate, veh/h Adj No. of Lanes Peak Hour Factor Percent Heavy Veh, % Cap, veh/h Grp Volume(v), veh/h Grp Sat Flow(s), veh/h/ln Q Serve(g_s), s Cycle Q Clear(g_c), s Prop In Lane Lane Grp Cap(c), veh/h HCM Platoon Ratio Upstream Filter(l) Uniform Delay (d2), s/veh lnGrp LOS Approach Vol, veh/h 22 Approach Vol, veh/h 23 Approach Vol, veh/h 24 Adj No. of Lanes 0.9 25 26 27 28 28 29 29 29 20 Approach Vol, veh/h	21 138 7 2 0 0 00 00 1.00 00 1863 16 153 0 0 2 2 2 3 39 180 26 0.26 05 687 02 0 1 0.0 11 0.0 13 0 14 0 15 0 16 0 17 0 18 0 18 0 18 0 18 0 18 0 18 0 18 0 18	3 3 4 14 0 0 1.00 1.00 1.00 3 3 0 0.90 2 2 0 4 4 0 0.26 7 13 0 0 0.0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	34 3 0 1.00 1.00 1900 38 0 0.90 2 85 0.11 779 89 1824 2.4 0.43 199 0.45	46 8 0 1.00 1863 51 1 0.90 2 114 0.11 1045 0 0.0	106 18 0 1.00 1.00 1863 118 1 0.90 2 293 0.11 1583 118 1583 3.4 3.4 1.00 293	2 5 0 1.00 1.00 1900 2 0 0.90 2 69 0.25 2 426 1861 1.6 11.7 0.00	382 2 0 1.00 1863 424 1 0.90 2 461 0.25 1859 0 0.0	237 12 0 1.00 1.00 1863 263 1 0.90 2 565 0.25 1583 263 1583 6.7 6.7	202 1 0 1.00 1.863 224 1 0.90 2 291 0.08 1774 224 1774 4.0 4.0 1.00	112 6 0 1.00 1863 124 1 0.90 2 283 0.40 708 0 0	155 16 0 1.00 1.00 1900 172 0 0.90 2 393 0.40 982 296 6.7 6.7
Number Initial Q (Qb), veh Ped-Bike Adj(A_pbT) 1.0 Parking Bus, Adj 1.0 Adj Sat Flow, veh/h/In Adj Flow Rate, veh/h 24 Adj No. of Lanes Peak Hour Factor 0.9 Percent Heavy Veh, % Cap, veh/h 110 Grp Volume(v), veh/h 110 Grp Volume(v), veh/h 110 Grp Sat Flow(s), veh/h/In 180 Q Serve(g_s), s 11. Cycle Q Clear(g_c), s 11. Prop In Lane 0.6 Lane Grp Cap(c), veh/h 47 V/C Ratio(X) 0.8 Avail Cap(c_a), veh/h 55 HCM Platoon Ratio 1.0 Upstream Filter(l) 1.0 Uniform Delay (d2), s/veh 10. Initial Q Delay(d3),s/veh 29. Kile BackOfQ(50%), veh/ln 6. LnGrp Delay(d), s/veh 29. LnGrp LOS Approach Vol, veh/h	7	14 14 14 1.00 1.00 1.00 1.00 1.00 1.00 1	3 0 1.00 1.00 1900 38 0 0.90 2 85 0.11 779 89 1824 2.4 2.4 0.43 199 0.45	8 0 1.00 1863 51 1 0.90 2 114 0.11 1045 0 0 0.0	18 0 1.00 1.00 1863 118 1 0.90 2 293 0.11 1583 118 1583 3.4 3.4 1.00 293	5 0 1.00 1.00 1900 2 0 0.90 2 69 0.25 2 426 1861 1.6 11.7 0.00	2 0 1.00 1863 424 1 0.90 2 461 0.25 1859 0 0 0.0	12 0 1.00 1.00 1863 263 1 0.90 2 565 0.25 1583 263 1583 6.7 6.7	1 0 1.00 1.00 1863 224 1 0.90 2 291 0.08 1774 224 1774 4.0 4.0	1.00 1863 124 1 0.90 2 283 0.40 708 0 0	166 1.00 1.00 1900 172 0.90 2393 0.40 982 296 6.7 6.7
Number Initial Q (Qb), veh Ped-Bike Adj(A_pbT) 1.0 Parking Bus, Adj 1.0 Adj Sat Flow, veh/h/In 190 Adj Flow Rate, veh/h 24 Adj No. of Lanes Peak Hour Factor 0.9 Percent Heavy Veh, % Cap, veh/h 28 Arrive On Green 0.2 Sat Flow, veh/h 110 Grp Volume(v), veh/h 40 Grp Sat Flow(s), veh/h/In 180 Q Serve(g_s), s 11. Q Serve(g_s), s 11. Prop In Lane 0.6 Lane Grp Cap(c), veh/h 47 V/C Ratio(X) 0.8 Avail Cap(c_a), veh/h 55 HCM Platoon Ratio 1.0 Upstream Filter(l) 1.0 Uniform Delay (d2), s/veh 10. Initial Q Delay(d3), s/veh 29. Kile BackOfQ(50%), veh/ln 29. LnGrp LOS Approach Vol, veh/h	0 (000 000 000 000 000 000 000 000 000	0 0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1	0 1.00 1900 38 0 0.90 2 85 0.11 779 89 1824 2.4 2.4 0.43 199 0.45	0 1.00 1863 51 1 0.90 2 114 0.11 1045 0 0 0.0	0 1.00 1.00 1863 118 1 0.90 2 293 0.11 1583 118 1583 3.4 3.4 1.00 293	0 1.00 1.00 1900 2 0 0.90 2 69 0.25 2 426 1861 1.6 11.7 0.00	0 1.00 1863 424 1 0.90 2 461 0.25 1859 0 0 0.0	0 1.00 1.00 1863 263 1 0.90 2 565 0.25 1583 263 1583 6.7 6.7	0 1.00 1.00 1863 224 1 0.90 2 291 0.08 1774 224 1774 4.0 4.0	0 1.00 1863 124 1 0.90 2 283 0.40 708 0 0	1.00 1.00 1900 172 0.90 2 393 0.40 982 296 1689 6.7
Ped-Bike Adj(A_pbT) 1.0 Parking Bus, Adj 1.0 Adj Sat Flow, veh/h/In 190 Adj Flow Rate, veh/h 24 Adj No. of Lanes 24 Peak Hour Factor 0.9 Percent Heavy Veh, % 28 Cap, veh/h 110 Grp Volume(v), veh/h 40 Grp Volume(v), veh/h 40 Grp Sat Flow, veh/h 180 Grp Volume(v), veh/h 180 Grp Volume(v), veh/h 40 Grp Sat Flow, veh/h 180 Grp Volume(v), veh/h 47 Vycle Q Clear(g_c), s 11 Prop In Lane 0.6 Lane Grp Cap(c), veh/h 47 V/C Ratio(X) 0.8 Avail Cap(c_a), veh/h 55 HCM Platoon Ratio 1.0 Upstream Filter(l) 1.0 Uniform Delay (d2), s/veh 10 Initial Q Delay(d3),s/veh 6 Kille BackOfQ(50%),veh/ln 6 LnGrp Delay(d),s/veh 29 LnGrp LOS	00	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	1.00 1.00 1900 38 0 0.90 2 85 0.11 779 89 1824 2.4 0.43 199 0.45	1.00 1863 51 1 0.90 2 114 0.11 1045 0 0 0.0	1.00 1.00 1863 118 1 0.90 2 293 0.11 1583 118 1583 3.4 3.4 1.00 293	1.00 1.00 1900 2 0 0.90 2 69 0.25 2 426 1861 1.6 11.7 0.00	1.00 1863 424 1 0.90 2 461 0.25 1859 0 0.0	1.00 1.00 1863 263 1 0.90 2 565 0.25 1583 263 1583 6.7 6.7	1.00 1.00 1863 224 1 0.90 2 291 0.08 1774 224 1774 4.0 4.0	1.00 1863 124 1 0.90 2 283 0.40 708 0 0	1.00 1.00 1900 172 0.90 2 393 0.40 982 296 1689 6.7
Parking Bus, Adj 1.0 Adj Sat Flow, veh/h/ln 190 Adj Flow Rate, veh/h 24 Adj No. of Lanes 28 Peak Hour Factor 0.9 Percent Heavy Veh, % 28 Cap, veh/h 110 Grp Volume(v), veh/h 40 Grp Volume(v), veh/h 180 Grp Volume(v), veh/h 180 Grp Sat Flow(s),veh/h/In 180 Q Serve(g_s), s 11 Cycle Q Clear(g_c), s 11 Prop In Lane 0.6 Lane Grp Cap(c), veh/h 47 V/C Ratio(X) 0.8 Avail Cap(c_a), veh/h 55 HCM Platoon Ratio 1.0 Upstream Filter(l) 1.0 Uniform Delay (d), s/veh 18 Incr Delay (d2), s/veh 10 Initial Q Delay(d3), s/veh 29 LnGrp Delay(d), s/veh 29 LnGrp LOS Approach Vol, veh/h	00 1.00 00 1863 16 153 0 0 0.90 2 2 2 89 180 26 0.26 05 683 02 0 0.1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0	1.00 1900 3 3 0 0.90 2 2 0 4 0 0.26 7 13 0 0 0 0.0 0 0.0 0 0.0	1.00 1900 38 0 0.90 2 85 0.11 779 89 1824 2.4 2.4 0.43 199 0.45	1863 51 1 0.90 2 114 0.11 1045 0 0 0.0	1.00 1863 118 1 0.90 2 293 0.11 1583 118 1583 3.4 3.4 1.00 293	1.00 1900 2 0 0.90 2 69 0.25 2 426 1861 1.6 11.7 0.00	1863 424 1 0.90 2 461 0.25 1859 0 0 0.0	1.00 1863 263 1 0.90 2 565 0.25 1583 263 1583 6.7 6.7	1.00 1863 224 1 0.90 2 291 0.08 1774 224 1774 4.0 4.0	1863 124 1 0.90 2 283 0.40 708 0 0	1.00 1900 172 0.90 2 393 0.40 982 296 1689 6.7
Adj Sat Flow, veh/h/ln 190 Adj Flow Rate, veh/h 24 Adj No. of Lanes 24 Peak Hour Factor 0.9 Percent Heavy Veh, % 28 Cap, veh/h 28 Arrive On Green 0.2 Sat Flow, veh/h 110 Grp Volume(v), veh/h 40 Grp Sat Flow(s),veh/h/ln 180 Q Serve(g_s), s 11 Cycle Q Clear(g_c), s 11 Prop In Lane 0.6 Lane Grp Cap(c), veh/h 47 V/C Ratio(X) 0.8 Avail Cap(c_a), veh/h 55 HCM Platoon Ratio 1.0 Upstream Filter(l) 1.0 Uniform Delay (d), s/veh 18 Incr Delay (d2), s/veh 10 Initial Q Delay(d3),s/veh 0. %ile BackOfQ(50%),veh/ln 6 LnGrp Delay(d),s/veh 29 LnGrp LOS Approach Vol, veh/h	00 1863 16 153 0 0 0.90 2 2 2 89 180 26 0.26 05 683 02 0 0.1 0.0 11 0.0 13 0.0 14 0.0 15 0.0 16 0.0 17 0.0 18 0.0	3 1900 3 3 0 0.90 2 2 0 4 0 0.26 7 13 0 0 0 0.0 0 0.0 0 0.0 0 0.0	1900 38 0 0.90 2 85 0.11 779 89 1824 2.4 2.4 0.43 199 0.45	1863 51 1 0.90 2 114 0.11 1045 0 0 0.0	1863 118 1 0.90 2 293 0.11 1583 118 1583 3.4 3.4 1.00 293	1900 2 0 0.90 2 69 0.25 2 426 1861 1.6 11.7 0.00	1863 424 1 0.90 2 461 0.25 1859 0 0 0.0	1863 263 1 0.90 2 565 0.25 1583 263 1583 6.7 6.7	1863 224 1 0.90 2 291 0.08 1774 224 1774 4.0 4.0	1863 124 1 0.90 2 283 0.40 708 0 0	1900 172 0.90 2 393 0.40 982 296 1689 6.7 6.7
Adj Sat Flow, veh/h/ln 190 Adj Flow Rate, veh/h 24 Adj No. of Lanes 0.9 Peak Hour Factor 0.9 Percent Heavy Veh, % 28 Cap, veh/h 110 Grp Volume(v), veh/h 110 Grp Volume(v), veh/h 180 Grp Sat Flow(s),veh/h/ln 180 Q Serve(g_s), s 11 Cycle Q Clear(g_c), s 11 Prop In Lane 0.6 Lane Grp Cap(c), veh/h 47 V/C Ratio(X) 0.8 Avail Cap(c_a), veh/h 55 HCM Platoon Ratio 1.0 Upstream Filter(I) 1.0 Uniform Delay (d2), s/veh 18 Incr Delay (d2), s/veh 10 Initial Q Delay(d3),s/veh 0. %ile BackOfQ(50%),veh/ln 6 LnGrp Delay(d),s/veh 29 LnGrp LOS Approach Vol, veh/h	16 153 0 0 0.90 2 2 2 39 180 26 0.26 05 683 02 0 01 0.0	3 3 0 0.90 2 2 2 0 4 4 0.26 7 13 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	38 0 0.90 2 85 0.11 779 89 1824 2.4 0.43 199 0.45	51 1 0.90 2 114 0.11 1045 0 0 0.0 0.0	118 1 0.90 2 293 0.11 1583 118 1583 3.4 3.4 1.00 293	2 0 0.90 2 69 0.25 2 426 1861 1.6 11.7 0.00	424 1 0.90 2 461 0.25 1859 0 0 0.0	263 1 0.90 2 565 0.25 1583 263 1583 6.7 6.7	224 1 0.90 2 291 0.08 1774 224 1774 4.0 4.0 1.00	124 1 0.90 2 283 0.40 708 0 0	172 0.90 2393 0.40 982 296 1689 6.7 6.7
Adj Flow Rate, veh/h 24 Adj No. of Lanes 0.9 Peak Hour Factor 0.9 Percent Heavy Veh, % 28 Cap, veh/h 110 Grp Volume(v), veh/h 110 Grp Volume(v), veh/h 40 Grp Sat Flow(s), veh/h/ln 180 Q Serve(g_s), s 11. Cycle Q Clear(g_c), s 11. Prop In Lane 0.6 Lane Grp Cap(c), veh/h 47 V/C Ratio(X) 0.8 Avail Cap(c_a), veh/h 55 HCM Platoon Ratio 1.0 Upstream Filter(l) 1.0 Uniform Delay (d2), s/veh 18 Incr Delay (d2), s/veh 10 Initial Q Delay(d3),s/veh 0. %ile BackOfQ(50%),veh/ln 6 LnGrp Delay(d),s/veh 29 LnGrp LOS Approach Vol, veh/h	0 0 0.90 2 2 2 39 180 26 0.26 05 683 02 (0 05 (0 1 0.0	0 0.90 2 2 4 4 0.26 7 13 0 0 0 0.0 0 0.01 0 0.00 0.00 0.00 0.	0 0.90 2 85 0.11 779 89 1824 2.4 2.4 0.43 199 0.45	1 0.90 2 114 0.11 1045 0 0 0.0 0.0	1 0.90 2 293 0.11 1583 118 1583 3.4 3.4 1.00 293	0 0.90 2 69 0.25 2 426 1861 1.6 11.7 0.00	1 0.90 2 461 0.25 1859 0 0 0.0	1 0.90 2 565 0.25 1583 263 1583 6.7 6.7	1 0.90 2 291 0.08 1774 224 1774 4.0 4.0	1 0.90 2 283 0.40 708 0 0	0.90 2 393 0.40 982 296 1689 6.7
Adj No. of Lanes Peak Hour Factor 0.9 Percent Heavy Veh, % 28 Cap, veh/h 28 Arrive On Green 0.2 Sat Flow, veh/h 110 Grp Volume(v), veh/h 40 Grp Sat Flow(s), veh/h/In 180 Q Serve(g_s), s 11. Cycle Q Clear(g_c), s 11. Prop In Lane 0.6 Lane Grp Cap(c), veh/h 47 V/C Ratio(X) 0.8 Avail Cap(c_a), veh/h 55 HCM Platoon Ratio 1.0 Upstream Filter(l) 1.0 Uniform Delay (d2), s/veh 18 Incr Delay (d2), s/veh 10 Initial Q Delay(d3),s/veh 0. %ile BackOfQ(50%),veh/ln 6 LnGrp Delay(d),s/veh 29 LnGrp LOS Approach Vol, veh/h	0 0 0.90 2 2 2 39 180 26 0.26 05 683 02 (0 05 (0 1 0.0	0 0.90 2 2 4 4 0.26 7 13 0 0 0 0.0 0 0.01 0 0.00 0.00 0.00 0.	0 0.90 2 85 0.11 779 89 1824 2.4 2.4 0.43 199 0.45	1 0.90 2 114 0.11 1045 0 0 0.0 0.0	1 0.90 2 293 0.11 1583 118 1583 3.4 3.4 1.00 293	0.90 2 69 0.25 2 426 1861 1.6 11.7 0.00	0.90 2 461 0.25 1859 0 0 0.0	1 0.90 2 565 0.25 1583 263 1583 6.7 6.7	0.90 2 291 0.08 1774 224 1774 4.0 4.0	1 0.90 2 283 0.40 708 0 0	0.90 2 393 0.40 982 296 1689 6.7
Peak Hour Factor Percent Heavy Veh, % Cap, veh/h Cap, veh/h Arrive On Green Sat Flow, veh/h Grp Volume(v), veh/h Grp Sat Flow(s),veh/h/In Q Serve(g_s), s Cycle Q Clear(g_c), s Prop In Lane Lane Grp Cap(c), veh/h V/C Ratio(X) Avail Cap(c_a), veh/h HCM Platoon Ratio Upstream Filter(l) Uniform Delay (d), s/veh Incr Delay (d2), s/veh %ile BackOfQ(50%),veh/ln LnGrp Delay(d),s/veh LnGrp LOS Approach Vol, veh/h	2 2 2 2 3 180 26 0.26 0.26 0.26 0.26 0.26 0.26 0.26	2 2 4 4 6 0.26 7 13 0 0 0 0 0.0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0.0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0.	2 85 0.11 779 89 1824 2.4 2.4 0.43 199 0.45	2 114 0.11 1045 0 0 0.0 0.0	2 293 0.11 1583 118 1583 3.4 3.4 1.00 293	2 69 0.25 2 426 1861 1.6 11.7 0.00	2 461 0.25 1859 0 0 0.0 0.0	2 565 0.25 1583 263 1583 6.7 6.7	2 291 0.08 1774 224 1774 4.0 4.0	2 283 0.40 708 0 0	2 393 0.40 982 296 1689 6.7 6.7
Cap, veh/h 28 Arrive On Green 0.2 Sat Flow, veh/h 110 Grp Volume(v), veh/h 40 Grp Sat Flow(s),veh/h/ln 180 Q Serve(g_s), s 11. Cycle Q Clear(g_c), s 11. Prop In Lane 0.6 Lane Grp Cap(c), veh/h 47 V/C Ratio(X) 0.8 Avail Cap(c_a), veh/h 55 HCM Platoon Ratio 1.0 Upstream Filter(l) 1.0 Uniform Delay (d), s/veh 18. Incr Delay (d2), s/veh 10. Initial Q Delay(d3),s/veh 0. %ile BackOfQ(50%),veh/ln 6. LnGrp Delay(d),s/veh 29. LnGrp LOS Approach Vol, veh/h	89 180 26 0.26 55 687 02 (0 55 (0 51 0.0 61 73 (0 85 0.00	0 4 0.26 7 13 0 0 0 0 0 0.0 0 0.0 0.01 0 0.00	2 85 0.11 779 89 1824 2.4 2.4 0.43 199 0.45	114 0.11 1045 0 0 0.0 0.0	293 0.11 1583 118 1583 3.4 3.4 1.00 293	69 0.25 2 426 1861 1.6 11.7 0.00	461 0.25 1859 0 0 0.0 0.0	565 0.25 1583 263 1583 6.7 6.7	291 0.08 1774 224 1774 4.0 4.0	283 0.40 708 0 0	2 393 0.40 982 296 1689 6.7 6.7
Cap, veh/h 28 Arrive On Green 0.2 Sat Flow, veh/h 110 Grp Volume(v), veh/h 40 Grp Sat Flow(s),veh/h/ln 180 Q Serve(g_s), s 11. Cycle Q Clear(g_c), s 11. Prop In Lane 0.6 Lane Grp Cap(c), veh/h 47 V/C Ratio(X) 0.8 Avail Cap(c_a), veh/h 55 HCM Platoon Ratio 1.0 Upstream Filter(l) 1.0 Uniform Delay (d), s/veh 18. Incr Delay (d2), s/veh 10. Initial Q Delay(d3),s/veh 0. %ile BackOfQ(50%),veh/ln 6. LnGrp Delay(d),s/veh 29. LnGrp LOS Approach Vol, veh/h	89 180 26 0.26 55 687 02 (0 55 (0 51 0.0 61 73 (0 85 0.00	0.26 13 0 0 0 0 0 0.0 0.0 0.01 0 0.00	0.11 779 89 1824 2.4 2.4 0.43 199 0.45	0.11 1045 0 0 0.0 0.0	0.11 1583 118 1583 3.4 3.4 1.00 293	0.25 2 426 1861 1.6 11.7 0.00	0.25 1859 0 0 0.0 0.0	0.25 1583 263 1583 6.7 6.7 1.00	0.08 1774 224 1774 4.0 4.0 1.00	0.40 708 0 0 0	393 0.40 982 296 1689 6.7 6.7
Arrive On Green Sat Flow, veh/h Grp Volume(v), veh/h Grp Sat Flow(s),veh/h/ln Q Serve(g_s), s Cycle Q Clear(g_c), s Prop In Lane Lane Grp Cap(c), veh/h V/C Ratio(X) Avail Cap(c_a), veh/h HCM Platoon Ratio Upstream Filter(l) Uniform Delay (d), s/veh Incr Delay (d2), s/veh lnitial Q Delay(d3),s/veh %ile BackOfQ(50%),veh/ln LnGrp Delay(d), s/veh LnGrp LOS Approach Vol, veh/h	26 0.26 05 687 02 (05 0.1 0.0 1.1 0.0 1.1 0.0 1.1 33 (08 1.3 0.00	0.26 13 0 0 0 0 0 0.0 0.0 0.01 0 0.00	0.11 779 89 1824 2.4 2.4 0.43 199 0.45	0.11 1045 0 0 0.0 0.0	0.11 1583 118 1583 3.4 3.4 1.00 293	0.25 2 426 1861 1.6 11.7 0.00	0.25 1859 0 0 0.0 0.0	0.25 1583 263 1583 6.7 6.7 1.00	0.08 1774 224 1774 4.0 4.0 1.00	0.40 708 0 0 0	0.40 982 296 1689 6.7 6.7
Sat Flow, veh/h Grp Volume(v), veh/h Grp Sat Flow(s),veh/h/ln Q Serve(g_s), s Cycle Q Clear(g_c), s Prop In Lane Lane Grp Cap(c), veh/h V/C Ratio(X) Avail Cap(c_a), veh/h HCM Platoon Ratio Upstream Filter(I) Uniform Delay (d), s/veh Incr Delay (d2), s/veh Initial Q Delay(d3),s/veh %ile BackOfQ(50%),veh/ln LnGrp Delay(d), s/veh LnGrp LOS Approach Vol, veh/h	05 683 02 (05 05 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.1	13 0 0 0 0 0 0.0 0 0.0 0 0.0 0 0.01 0 0.00	779 89 1824 2.4 2.4 0.43 199 0.45	0 0 0.0 0.0	1583 118 1583 3.4 3.4 1.00 293	2 426 1861 1.6 11.7 0.00	0 0 0.0 0.0	1583 263 1583 6.7 6.7 1.00	1774 224 1774 4.0 4.0 1.00	708 0 0 0.0	982 296 1689 6.7 6.7
Grp Volume(v), veh/h Grp Sat Flow(s), veh/h/ln Q Serve(g_s), s Cycle Q Clear(g_c), s Prop In Lane Lane Grp Cap(c), veh/h V/C Ratio(X) Avail Cap(c_a), veh/h HCM Platoon Ratio Upstream Filter(l) Uniform Delay (d), s/veh Incr Delay (d2), s/veh Incr Delay (d3), s/veh %ile BackOfQ(50%), veh/ln LnGrp Delay(d), s/veh LnGrp LOS Approach Vol, veh/h	02 (05 (.1 0.0 .1 0.0 .1 0.0 .1 (.23 (.25 0.00	0 0 0 0.0 0 0.0 0 0.0 0 0.01 0 0.00	89 1824 2.4 2.4 0.43 199 0.45	0 0 0.0 0.0	118 1583 3.4 3.4 1.00 293	426 1861 1.6 11.7 0.00	0 0 0.0 0.0	263 1583 6.7 6.7 1.00	224 1774 4.0 4.0 1.00	0 0 0.0	296 1689 6.7 6.7
Grp Sat Flow(s),veh/h/ln Q Serve(g_s), s Cycle Q Clear(g_c), s Prop In Lane Lane Grp Cap(c), veh/h V/C Ratio(X) Avail Cap(c_a), veh/h HCM Platoon Ratio Upstream Filter(l) Uniform Delay (d), s/veh Incr Delay (d2), s/veh Nile BackOfQ(50%),veh/ln LnGrp Delay(d),s/veh LnGrp LOS Approach Vol, veh/h	05 (.1 0.0 .1 0.0 61 73 (85 0.00	0 0.0 0 0.0 0 0.0 0.01 0 0.00	1824 2.4 2.4 0.43 199 0.45	0 0.0 0.0	1583 3.4 3.4 1.00 293	1861 1.6 11.7 0.00	0 0.0 0.0	1583 6.7 6.7 1.00	1774 4.0 4.0 1.00	0.0	1689 6.7 6.7
Q Serve(g_s), s 11. Cycle Q Clear(g_c), s 11. Prop In Lane 0.6 Lane Grp Cap(c), veh/h 47 V/C Ratio(X) 0.8 Avail Cap(c_a), veh/h 55 HCM Platoon Ratio 1.0 Upstream Filter(I) 1.0 Uniform Delay (d), s/veh 18. Incr Delay (d2), s/veh 10. Initial Q Delay(d3),s/veh 0. %ile BackOfQ(50%),veh/In 6. LnGrp Delay(d),s/veh 29. LnGrp LOS Approach Vol, veh/h	.1 0.0 .1 0.0 .51 .73 (.85 0.00	0.0 0.0 0.01 0.01 0 0.00	2.4 2.4 0.43 199 0.45	0.0 0.0	3.4 3.4 1.00 293	1.6 11.7 0.00	0.0	6.7 6.7 1.00	4.0 4.0 1.00	0.0	6.7 6.7
Cycle Q Clear(g_c), s 11. Prop In Lane 0.6 Lane Grp Cap(c), veh/h 47 V/C Ratio(X) 0.8 Avail Cap(c_a), veh/h 55 HCM Platoon Ratio 1.0 Upstream Filter(I) 1.0 Uniform Delay (d), s/veh 18. Incr Delay (d2), s/veh 10. Initial Q Delay(d3),s/veh 0. %ile BackOfQ(50%),veh/In 6. LnGrp Delay(d),s/veh 29. LnGrp LOS Approach Vol, veh/h	.1 0.0 51 73 (85 0.00	0.0 0.01 0 0 0 0.00	2.4 0.43 199 0.45	0.0	3.4 1.00 293	11.7 0.00	0.0	6.7 1.00	4.0 1.00		6.7
Prop In Lane 0.6 Lane Grp Cap(c), veh/h 47 V/C Ratio(X) 0.8 Avail Cap(c_a), veh/h 55 HCM Platoon Ratio 1.0 Upstream Filter(I) 1.0 Uniform Delay (d), s/veh 18. Incr Delay (d2), s/veh 10. Initial Q Delay(d3),s/veh 0. %ile BackOfQ(50%),veh/In 6. LnGrp Delay(d),s/veh 29. LnGrp LOS Approach Vol, veh/h	51 73 (85 0.00	0.01 0 0.00	0.43 199 0.45	0	1.00 293	0.00		1.00	1.00	0.0	
Lane Grp Cap(c), veh/h V/C Ratio(X) Avail Cap(c_a), veh/h HCM Platoon Ratio Upstream Filter(I) Uniform Delay (d), s/veh Incr Delay (d2), s/veh Intital Q Delay(d3),s/veh %ile BackOfQ(50%),veh/ln LnGrp Delay(d),s/veh LnGrp LOS Approach Vol, veh/h	73 (35 0.00	0.00	199 0.45		293		0				0.58
V/C Ratio(X) 0.8 Avail Cap(c_a), veh/h 55 HCM Platoon Ratio 1.0 Upstream Filter(I) 1.0 Uniform Delay (d), s/veh 18. Incr Delay (d2), s/veh 10. Initial Q Delay(d3),s/veh 0. %ile BackOfQ(50%),veh/ln 6. LnGrp Delay(d),s/veh 29. LnGrp LOS Approach Vol, veh/h	35 0.00	0.00	0.45			550		565	291	0	676
Avail Cap(c_a), veh/h HCM Platoon Ratio Upstream Filter(l) Uniform Delay (d), s/veh Incr Delay (d2), s/veh Initial Q Delay(d3),s/veh %ile BackOfQ(50%),veh/ln LnGrp Delay(d),s/veh LnGrp LOS Approach Vol, veh/h				0.00		0.80	0.00	565 0.47	0.77	0.00	0.44
HCM Platoon Ratio Upstream Filter(I) Uniform Delay (d), s/veh Incr Delay (d2), s/veh Initial Q Delay(d3),s/veh %ile BackOfQ(50%),veh/In LnGrp Delay(d),s/veh 29. LnGrp LOS Approach Vol, veh/h		. ()	556	0	603	530	0.00	565	291	0.00	676
Upstream Filter(I) 1.0 Uniform Delay (d), s/veh 18. Incr Delay (d2), s/veh 10. Initial Q Delay(d3),s/veh 0. %ile BackOfQ(50%),veh/In 6. LnGrp Delay(d),s/veh 29. LnGrp LOS Approach Vol, veh/h			1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh Incr Delay (d2), s/veh Initial Q Delay(d3),s/veh %ile BackOfQ(50%),veh/In LnGrp Delay(d),s/veh 29. LnGrp LOS Approach Vol, veh/h			1.00	0.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00
Incr Delay (d2), s/veh 10. Initial Q Delay(d3),s/veh 0. %ile BackOfQ(50%),veh/In 6. LnGrp Delay(d),s/veh 29. LnGrp LOS Approach Vol, veh/h			21.9	0.00	18.8	19.3	0.00	13.0	15.9	0.00	11.4
Initial Q Delay(d3),s/veh 0. %ile BackOfQ(50%),veh/ln 6. LnGrp Delay(d),s/veh 29. LnGrp LOS Approach Vol, veh/h			1.6	0.0	0.9	8.8	0.0	0.6	11.9	0.0	0.4
%ile BackOfQ(50%),veh/ln 6. LnGrp Delay(d),s/veh 29. LnGrp LOS Approach Vol, veh/h			0.0	0.0	0.9	0.0	0.0	0.0	0.0	0.0	0.0
LnGrp Delay(d),s/veh 29. LnGrp LOS Approach Vol, veh/h			1.3	0.0	1.6	7.2	0.0	3.5	2.3	0.0	3.1
LnGrp LOS Approach Vol, veh/h			23.5	0.0	19.7	28.0	0.0	13.6	27.8	0.0	11.9
Approach Vol, veh/h	. 1 0.0 C	0.0	23.3 C	0.0	19.7 B	20.0 C	0.0	13.0 B	27.0 C	0.0	11.9 B
•		,		207	В		/00	ь		F20	D
Approach Delay, s/ven	402			207			689			520	
Amman a ala I OC	29.1			21.3			22.5			18.7	
Approach LOS	(•		С			С			В	
Timer	1 2		4	5	6	7	8				
	1 2)	4		6		8				
Phs Duration (G+Y+Rc), s 8.	.0 17.0)	17.8		25.0		9.7				
Change Period (Y+Rc), s 4.	.0 4.0)	4.0		4.0		4.0				
Max Green Setting (Gmax), s 4.	.0 13.0)	16.0		21.0		16.0				
Max Q Clear Time (g_c+l1), s 6.	.0 13.7	1	13.1		8.7		5.4				
Green Ext Time (p_c), s 0.	.0 0.0)	0.7		4.5		0.6				
Intersection Summary											
HCM 2010 Ctrl Delay		22.8									
HCM 2010 LOS		C									
Notes User approved pedestrian interval to											

Capitola Skateboard Park 12:00 pm 5/30/2015 Cumulative Plus Project Conditions Kimley-Horn

Intersection Intersection Delay, s/veh 10.2 Intersection LOS B Movement EBU EBL EBR NBU NBT SBU SBT SBR Traffic Vol, veh/h 0 71 223 0 220 22 0 29 112 Future Vol, veh/h 0 71 223 0 220 22 0 29 112 Peak Hour Factor 0.92 0.94 0.94 0.92 0.94 0.94 0.92 0.94 0.94 Heavy Vehicles, % 2<
Movement EBU EBL EBR NBU NBL NBT SBU SBT SBR Traffic Vol, veh/h 0 71 223 0 220 22 0 29 112 Future Vol, veh/h 0 71 223 0 220 22 0 29 112 Peak Hour Factor 0.92 0.94 0.94 0.92 0.94 0.94 0.92 0.94 0.94 Heavy Vehicles, % 2 2 2 2 2 2 2 2 2 2
Movement EBU EBL EBR NBU NBL NBT SBU SBT SBR Traffic Vol, veh/h 0 71 223 0 220 22 0 29 112 Future Vol, veh/h 0 71 223 0 220 22 0 29 112 Peak Hour Factor 0.92 0.94 0.92 0.94 0.92 0.94 0.92 0.94 0.92 Heavy Vehicles, % 2 2 2 2 2 2 2 2 2
Traffic Vol, veh/h 0 71 223 0 220 22 0 29 112 Future Vol, veh/h 0 71 223 0 220 22 0 29 112 Peak Hour Factor 0.92 0.94 0.94 0.92 0.94 0.94 0.94 0.92 0.94 0.94 Heavy Vehicles, % 2 2 2 2 2 2 2 2 2
Future Vol, veh/h 0 71 223 0 220 22 0 29 112 Peak Hour Factor 0.92 0.94 0.94 0.92 0.94 0.94 0.92 0.94 0.94 0.94 0.92 0.94 0.94 0.94 0.92 0.94
Peak Hour Factor 0.92 0.94 0.92 0.94 0.94 0.94 0.92 0.94 0.94 Heavy Vehicles, % 2
Heavy Vehicles, % 2 2 2 2 2 2 2 2 2
Mymt Flow 0 76 237 0 234 23 0 31 110
MINITERIOR O 10 ZOT ZO O SI III
Number of Lanes 0 1 0 0 0 1 0 1 0
Approach EB NB SB
Opposing Approach SB NB
Opposing Lanes 0 1
Conflicting Approach Left SB EB
Conflicting Lanes Left 1 1 0
Conflicting Approach Right NB EB
Conflicting Lanes Right 1 0 1
HCM Control Delay 10.4 10.9 8.6
HCM LOS B B A
Lane NBLn1 EBLn1 SBLn1
Vol Left, % 91% 24% 0%
Vol Thru, % 9% 0% 21%
Vol Right, % 0% 76% 79%
Sign Control Stop Stop Stop
Traffic Vol by Lane 242 294 141
LT Vol 220 71 0
Through Vol 22 0 29
RT Vol 0 223 112
Lane Flow Rate 257 313 150
Geometry Grp 1 1 1
Degree of Util (X) 0.359 0.391 0.188
Departure Headway (Hd) 5.014 4.497 4.514
Convergence, Y/N Yes Yes Yes
Cap 713 798 788
Service Time 3.077 2.546 2.582
HCM Lane V/C Ratio 0.36 0.392 0.19
HCM Control Delay 10.9 10.4 8.6
HCM Lane LOS B B A
HCM 95th-tile Q 1.6 1.9 0.7

	•	→	*	€	←	4	1	†	~	/	↓	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4	7		4	7	¥	4î	
Traffic Volume (veh/h)	202	137	6	85	60	314	8	397	294	310	165	186
Future Volume (veh/h)	202	137	6	85	60	314	8	397	294	310	165	186
Number	7	4	14	3	8	18	5	2	12	1	6	16
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	(
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1900	1863	1900	1900	1863	1863	1900	1863	1863	1863	1863	1900
Adj Flow Rate, veh/h	213	144	6	89	63	331	8	418	309	326	174	196
Adj No. of Lanes	0	1	0	0	1	1	0	1	1	1	1	C
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	266	180	8	113	80	339	68	460	564	337	343	386
Arrive On Green	0.25	0.25	0.25	0.11	0.11	0.11	0.25	0.25	0.25	0.11	0.43	0.43
Sat Flow, veh/h	1059	716	30	1060	750	1583	11	1842	1583	1774	801	902
Grp Volume(v), veh/h	363	0	0	152	0	331	426	0	309	326	0	370
Grp Sat Flow(s), veh/h/ln	1805	0	0	1810	0	1583	1853	0	1583	1774	0	1703
Q Serve(g_s), s	10.6	0.0	0.0	4.6	0.0	6.0	3.1	0.0	8.8	6.0	0.0	8.9
Cycle Q Clear(g_c), s	10.6	0.0	0.0	4.6	0.0	6.0	12.6	0.0	8.8	6.0	0.0	8.9
Prop In Lane	0.59	0.0	0.02	0.59	0.0	1.00	0.02	0.0	1.00	1.00	0.0	0.53
Lane Grp Cap(c), veh/h	454	0	0	193	0	339	528	0	564	337	0	728
V/C Ratio(X)	0.80	0.00	0.00	0.79	0.00	0.98	0.81	0.00	0.55	0.97	0.00	0.51
Avail Cap(c_a), veh/h	740	0	0	193	0	339	528	0	564	337	0	728
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	0.00	1.00	0.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00
Uniform Delay (d), s/veh	19.7	0.0	0.0	24.4	0.0	21.9	20.5	0.0	14.4	17.0	0.0	11.7
Incr Delay (d2), s/veh	3.3	0.0	0.0	18.9	0.0	42.8	9.0	0.0	1.1	40.5	0.0	0.6
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	5.7	0.0	0.0	3.3	0.0	9.1	7.7	0.0	4.6	5.9	0.0	4.2
LnGrp Delay(d),s/veh	23.0	0.0	0.0	43.4	0.0	64.7	29.5	0.0	15.6	57.5	0.0	12.3
LnGrp LOS	С			D		E	С		В	E		В
Approach Vol, veh/h		363			483			735			696	
Approach Delay, s/veh		23.0			58.0			23.7			33.5	
Approach LOS		C			E			С			С	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs	1	2	J	4	J	6	,	8				
Phs Duration (G+Y+Rc), s	10.0	18.0		18.1		28.0		10.0				
	4.0					4.0		4.0				
Change Period (Y+Rc), s		4.0		4.0								
Max Green Setting (Gmax), s	6.0	14.0		23.0		24.0		6.0				
Max Q Clear Time (g_c+l1), s Green Ext Time (p_c), s	8.0	14.6		12.6 1.6		10.9		8.0				
	0.0	0.0		1.0		5.2		0.0				
Intersection Summary			22.0									
HCM 2010 Ctrl Delay			33.8									
HCM 2010 LOS			С									
Notes												
User approved pedestrian inter	rval to be	e less tha	n phase r	nax greei	n							

Capitola Skateboard Park 4:00 pm 5/30/2015 Cumulative Plus Project Conditions Kimley-Horn

APPENDIX D

Η	CM	201	0 Sigr	nalized	l Inter	section	Summary	1
1:	PA	RK /	4VF 8	KENI	VEDY	DR		

8/24/2015

User approved changes to right turn type.

Intersection									
Intersection Delay, s/veh	13.3								
Intersection LOS	В								
		1	EDD	NDLI	NDI	NDT	CDII	CDT	CDD
Movement	EBU EB		EBR	NBU	NBL	NBT	SBU	SBT	SBR
Traffic Vol, veh/h	0 17		246	0	206	62	0	47	141
Future Vol, veh/h	0 17		246	0	206	62	0	47	141
Peak Hour Factor	0.92 0.9		0.95	0.92	0.95	0.95 2	0.92	0.95	0.95
Heavy Vehicles, % Mvmt Flow	2 0 18	2	2 259	2	2 217	65	0	2 49	2 148
Number of Lanes		1	259	0	0	1	0	1	140
Number of Lanes	U	I	U	U	U	ı	U	I	U
Approach	E	3			NB			SB	
Opposing Approach		<u>, </u>			SB			NB	
Opposing Lanes)			1			1	
Conflicting Approach Left	S				EB			'	
Conflicting Lanes Left		, 1			1			0	
Conflicting Approach Right	N				ı I			EB	
Conflicting Lanes Right		, 1			0			1	
HCM Control Delay	1				12.8			10.1	
HCM LOS		3			В			В	
Lane	NBLn	1 EBLn1	SBLn1						
Vol Left, %	779		0%						
		0 41/0	U%						
Vol Inru. %									
Vol Thru, % Vol Right, %	239	6 0%	25%						
Vol Right, %	23° 0°	6 0% 6 59%	25% 75%						
Vol Right, % Sign Control	239	6 0% 6 59% 5 Stop	25% 75% Stop						
Vol Right, %	239 09 Sto	6 0% 6 59% 5 Stop 8 419	25% 75%						
Vol Right, % Sign Control Traffic Vol by Lane	239 09 Sto 26	6 0% 6 59% 6 Stop 8 419 6 173	25% 75% Stop 188						
Vol Right, % Sign Control Traffic Vol by Lane LT Vol	239 09 Sto 26 20 6	6 0% 6 59% 6 Stop 8 419 6 173	25% 75% Stop 188 0						
Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol	239 09 Sto 26 20 6	6 0% 59% 5 Stop 8 419 6 173 2 0 0 246	25% 75% Stop 188 0 47						
Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol	23° 0° Sto 26 20	6 0% 59% 5 Stop 8 419 6 173 2 0 0 246	25% 75% Stop 188 0 47 141						
Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate	23° 0° Sto 26 20	6 0% 59% 5 Stop 8 419 6 173 2 0 2 246 2 441 1 1	25% 75% Stop 188 0 47 141 198						
Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp	239 09 Sto 26 20 6 28 0.43	6 0% 6 59% 5 top 8 419 6 173 2 0 0 246 2 441 1 1 6 0.594 6 4.978	25% 75% Stop 188 0 47 141 198						
Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd)	239 09 Sto 26 20 6	6 0% 6 59% 5 top 8 419 6 173 2 0 0 246 2 441 1 1 6 0.594 6 4.978	25% 75% Stop 188 0 47 141 198 1						
Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap	239 09 Sto 26 20 6 28 0.43 5.5 Ye 65	6 0% 59% 5 Stop 8 419 6 173 2 0 0 246 2 441 1 1 6 0.594 4.978 5 Yes 2 728	25% 75% Stop 188 0 47 141 198 1 0.281 5.111 Yes 706						
Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time	239 99 Sto 26 20 6 28 0.43 5.5 Ye 65 3.56	6 0% 59% 5 59% 5 Stop 8 419 6 173 2 0 0 246 2 441 1 1 6 0.594 6 4.978 8 Yes 2 728 7 2.978	25% 75% Stop 188 0 47 141 198 1 0.281 5.111 Yes 706 3.122						
Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time HCM Lane V/C Ratio	239 09 Sto 26 20 6 28 0.43 5.5 Ye 65 3.56	6 0% 6 59% 5 Stop 8 419 6 173 2 0 0 246 2 441 1 1 1 6 0.594 4.978 8 Yes 2 728 7 2.978 3 0.606	25% 75% Stop 188 0 47 141 198 1 0.281 5.111 Yes 706 3.122 0.28						
Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time HCM Lane V/C Ratio HCM Control Delay	239 09 Sto 26 20 6 28 0.43 5.5 Ye 65 3.56 0.43	6 0% 6 59% 5 Stop 8 419 6 173 2 0 0 246 2 441 1 1 6 0.594 6 4.978 5 Yes 2 728 7 2.978 3 0.606 8 15	25% 75% Stop 188 0 47 141 198 1 0.281 5.111 Yes 706 3.122 0.28 10.1						
Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time HCM Lane V/C Ratio	239 09 Sto 26 20 6 28 0.43 5.5 Ye 65 3.56 0.43	6 0% 6 59% 7 599 8 419 6 173 2 0 7 246 2 441 1 1 6 0.594 6 4.978 8 Yes 2 728 7 2.978 8 0.606 8 15 8 B	25% 75% Stop 188 0 47 141 198 1 0.281 5.111 Yes 706 3.122 0.28						

APPENDIX F Calculation of Cumulative Condition Midday Peak Hour Volumes

Calculation of annual % growth based on Existing & Cumulative PM peak hour volumes

Growth Rate	Annual % Growth	Avg Annual %	Direction, Road Segment
1.608465608	2.40%		NB, north of Kennedy/Park
1.170068027	0.79%	0.96%	EB, west of Kennedy/Park
1.254054054	1.14%	0.90%	NB, north of Monterey/Bay
1.049792531	0.24%		WB, west of Kennedy/Park
1.189003436	0.87%		WB, west of Monterey/Bay
1.108225108	0.52%		SB, south of Park/Kennedy
1.600431965	2.38%		EB, east of Kennedy/Park
1.270742358	1.21%		SB, south of Bay/Monterey

Kimley-Horn, 2015.