D.W. ALLEY \& Associates

SOQUEL CREEK LAGOON MONITORING
REPORT, 1993

Prepared for
CITY OF CAPITOLA
420 Capitola Avenue Capitola, California 95010

April 14, 1994
Project \# 106-03


## TABLE OF CONTENTS

Page
ACKNOWLEDGMENTS ..... 1
EXECUTIVE SUMMARY ..... 2
LAGOON AND ESTUARY FORMATION ..... 5
Recommendations Regarding Sandbar Construction ..... 7
Sandbar Breaching During the 1992-93 Rainy Season ..... 8
Recommendations Regarding Sandbar Breaching ..... 9
MONITORING OF PONDWEED AND ALGAL DENSITIES ..... 11
Recommendations Regarding Control of Algae ..... 14
ANALYSIS OF FECAL BACTERIA MONITORING ..... 15
Fecal Coliform Counts from Santa Cruz County Monitoring ..... 15
Conclusions from Fecal Bacterial Monitoring ..... 16
Monitoring of Dog Excrement ..... 17
Recommendations Regarding the Monitoring and Reduction of Fecal Bacteria ..... 17
WATER QUALITY MONITORING ..... 20
Rating Criteria ..... 20
Results of Water Quality Monitoring After Sandbar Closure ..... 20
Recommendations for Improving Water Quality and Fish Habitat. ..... 23
BIRD CENSUSING ..... 24
Fish-eating Birds Observed at the Lagoon ..... 26
Bird-feeding by Humans ..... 27
Waterfowl as Biological Control of Aquatic Plants ..... 27
Recommendations Regarding Management of Bird-Feeding and Birds ..... 27
FISH CENSUSING ..... 28
Discussion of Results of Fish Sampling ..... 30
Recommendations Regarding Fish Management ..... 31
LITERATURE CITED ..... 31
Table 1. Changes in Pondweed and Algae Densities, 1993 ..... 13
Table 2. Water Quality Ratings for Key Parameters in Soquel Creek Lagoon, 1993 ..... 21
Table 3. Comparison of bird densities by Reach in Soquel Creek Lagoon, including American coots. Pigeons on the railroad trestle (Reach 2) were excluded in 1991 and included in 1992 and 1993 ..... 24
Table 4. Comparison of Bird Densities in Soquel Creek Lagoon for 1991 and 1992 ..... 26
Table 5. Fish-eating Birds Observed at the Lagoon ..... 26

## TABLE OF CONTENTS (continued)

Page
Table 6. Fish Sampling Results, 26 September 1993 ..... 32
Table 7. Fish Sampling Results, 17 November 1988 ..... 33
Table 8. Fish Sampling Results, 24 October 1992 ..... 35
Figure 1. Fecal Coliform Counts at the Flume, Comparing 1990, 1991, 1992 and 1993. ..... 36
Figure 2. Fecal Coliform Counts at the Railroad Trestle, Comparing 1990, 1991, 1992 and 1993 ..... 37
Figure 3. Fecal Coliform Counts at the Bay Street Tunnel on Noble Gulch, comparing 1990, 1991, 1992 and 1993. ..... 38
Figure 4. Fecal Coliform Counts at the Mouth of Noble Gulch, comparing 1991, 1992 and 1993. ..... 39
Figure 5. Fecal Coliform Counts at Nob Hill, Comparing 1992 and 1993 ..... 40
Figure 6. Map of Reaches in Soquel Creek Lagoon. ..... 41
Appendix A. Photographs, 1993.
Appendix B. Fish and Game Agreement Regarding Proposed Stream orLake Alteration, 1993.
Appendix C. Santa Cruz County Bacterial Monitoring Data.
Appendix D. Detailed Monitoring Data Regarding General Observa-tions, Water Quality, Bird Densities and AquaticPlant Densities, 1992.

## ACKNOWLEDGMENTS

We wish to again acknowledge the funding entities for this monitoring work. They were the Coastal Conservancy, with Jim King being the project analyst who obtained state funds, and the City of Capitola with its enlightened City Council which adopted the Soquel Creek Lagoon Management and Enhancement Plan in 1990, which called for lagoon monitoring. The monitoring was greatly facilitated by the Public Works personnel. We have all become familiar players in the summer activities at the lagoon. There was a caring attitude among city employees to protect the habitat of steelhead and other wildlife that use the lagoon. We worked closely with Ed Morrison and Jim Turcotte, They took the time to adjust the boards at the flume entrance to adequately manage lagoon levels when needed, day or night and weekends included.

We wish to thank Joseph Urbani for his help in cleaning out the kelp before sandbar closing and keeping an eye on the lagoon. His observations are always very informative. We are fortunate that Daniel Morrison, Ed's son, was able to catch a steelhead in the lagoon in November, while the flume was still operating.

We wish to again thank Nels Westman and the Begonia Festival organizers for doing another effective job of cleaning up the flowers after the Festival in September, 1993. I had the pleasure of seeing the floats and soaking up the festive atmosphere this year. Boys from McDowell Youth Homes dismantled the floats and cleaned up afterwards.

We are again indebted to the volunteer efforts of Dr . Jerry Smith, several of his San Jose State students and friends, the Friends of Soquel Creek and lagoon visitors during the fish sampling in September and October, 1993. We heartily thank Harvey Rodgers of the San Lorenzo Steelheaders and his friends for helping with fish sampling. Patricia Anderson of the California Department of Fish and Game and Ann Lopez, a biologist from San Jose City College also provided their valuable time in sampling. Hopefully, we may obtain more volunteer help in 1994.

We wish to thank the Friends of Soquel Creek for their continued interest in the fish and wildlife of Soquel Lagoon, as well as upstream in the watershed. They, too, assisted in the fish sampling. The long-term health and welfare of Soquel Creek Lagoon will depend on Capitola's citizens.

The skill of Bill Casalegno in constructing the sandbar was again very appreciated. The cover's photographs were taken of Bill as he constructed the sandbar in May, 1993, and City staff. Bill is a Zen Master in the use of a D-8 Caterpillar tractor. It was memorable to watch him working the sand around the flume exit, his heavy blade swinging and cutting deliberately beside trusting, shoveling men, hurrying to beat an in-coming tide before it could engulf them.

## EXECUTIVE SUMMARY

In May, 1993, Soquel Creek meandered east across the beach to the rock jetty before emptying into the Monterey Bay, as it had in 1992. Fish that may have been in this eastward channel were herded back into the main estuary with a $1 / 4$-inch mesh seine at the advisement of the Department of Fish and Game. We saw one staghorn sculpin in the channel and none down at the jetty during this operation. Then the channel was closed off for sandbar construction. The periphery of the lagoon was walked in search of tidewater gobies. None were seen. After sufficient sand was stockpiled by Mr. Casalegno, our clean up of the lagoon was begun. The process of sandbar construction involved a 4-day period of opening the sandbar at low tide near dawn, raking furiously for $2-3$ hours and plugging the sandbar at high tide before salt water could wash in, from 18 May through 21 May 1993. The final preparation of the flume entrance and final sandbar closure was delayed due to rain. The sandbar continued to be opened on 3 more mornings, 24 May through 27 May until enough sand could be accumulated on the beach and the plastic could be positioned at the flume entrance. City personnel and Don Alley hand-raked decomposing kelp, sea grass and decomposed ooze out of the lagoon through the opening each day. Each day the sandbar was closed just before high tide in order to prevent salt water incursion. The sandbar had to be closed early each morning (0800-0915hr) in 1993, necessitating concentrated periods of raking. Large conglomerates of plant material above the water line were raked by tractor and spread out in the surf.

More than $90 \%$ of the decomposing plant material was removed before sandbar closure. Unlike 1992, in 1993 there was not much ooze on the bottom. The lagoon had less plant material for decomposition when the sandbar was closed in 1993. With 12 to 15 cfs as baseflow when the sandbar was installed, there was no need to use the shroud. The saltwater was flushed out the first week.

Water quality for aquatic life in the summer lagoon was generally good with regard to oxygen, salinity, conductivity and cover. A decline in oxygen level was detected at the bottom after the Begonia Festival. However, it posed no significant problem for fishes, and had increased by the next monitoring, a week later. Water temperatures were fair to good all summer, except in early August at the flume. This was a significant improvement over the previous summer. The lagoon gage height was usually 0.1-0.2 feet higher than the previous summer, and in September it was 0.5 feet higher for the entire month. A deeper lagoon in 1993 helped to maintain cooler conditions than in 1992 and slower plant growth. There was only an 8-day period in October, 1993, in which the lagoon level dropped excessively by 0.21 meters ( 0.7 feet) to create depths of one meter or less, except in the central channel where it was 1.5 meters maximum. Depth improved when the boards were re-installed.

Fish passage through the flume was excellent all summer. City
staff did an excellent job of preserving the sandbar early in the season when it rained in June. They did an excellent job in preserving the sandbar until a significant rain period ensued after December 9. Ed Morrison was out there on several nights in early and late November, pulling boards out of the flume. He was increasing the flume's capacity so as to maintain the sandbar until the rainy season began in earnest after Thanksgiving. Thus, the valuable steelhead nursery habitat was protected as long as possible in 1993. Smolts and adults were given good access through the sandbar when streamflows were high enough to maximize survival. In 1993, there was proof that adult steelhead swam through the flume into the lagoon in November because several were caught in the lagoon in November.

Fish sampling in September and October in which steelhead were marked and recaptured, indicated that the steelhead density in the lagoon was high. The juvenile steelhead population in the lagoon was estimated to be 2787 juveniles $+/-306$. No hatchery fish were captured, indicating that they made it out the previous spring. The creek flowed continuously to the lagoon without the dry reach through Soquel Village as had occurred in earlier summers. Hydraulic continuity allowed large numbers of juvenile steelhead to down-migrate to the lagoon throughout the summer to utilize valuable nursery habitat there. The lowest estimated inflow to the lagoon was 1 cfs in September. Sacramento suckers had dramatically entered the lagoon in 1992 in high numbers and helped to control algal densities. However, sampling in 1993 indicated that the sucker population had declined. Tidewater gobies appeared absent downstream of the Stockton Avenue bridge in 1993, unlike in 1988 when the density was in the hundreds of fish. No searches for gobies were made in the upper lagoon, where some may have been present. The apparent decline and possible elimination of tidewater gobies in Soquel Lagoon may have been due to being flushed out of the system by more normal stormflows in the last couple of years since the drought. Soquel Creek lacks quiet backwater refuges at its mouth to shelter tidewater gobies. The gobies present during the drought may have colonized from Corcoran Lagoon. Threespine sticklebacks were abundant throughout the lagoon in 1993.

Regarding waterfowl, there was an additional goose in 1993, bringing the number to 4 . This was considerably less than the 16 geese tallied back in July, 1989, before most were relocated. The density of mallards increased in 1993 over the previous year. This may be attributed to the greater reproductive success of wild mallards. The most significant increase in birds was the three-fold increase in pigeons using Reach 2, either roosting on the trestle or at the east park near the bridge.

There was an increase in fish-eating birds at the lagoon in 1993. A female merganser brought her 3 young to the lagoon. One young disappeared early on. But either the mother or two of her offspring were seen in the lagoon much of the summer. Piedbilled grebes were more common, too, with as many as 4 being seen feeding on fish in the lagoon at one time. We saw our first
green-backed herons and black-crowned night heron at the lagoon in 1993. American coots again returned to the lagoon the second week of September and were abundant (> 100) by Thanksgiving.

Aquatic plant production was nil for the first month after sandbar closure in 1993. But in July there was a dramatic bloom of filamentous algae that filled the lagoon below the surface. It then died off in the reaches below the railroad trestle in early August. Reach 3 retained thick algae longer because it bloomed later than in the lower reaches. After the die off, algae did not cover more than $60 \%$ of the lagoon bottom for the remainder of the season and remained less than 2 feet thick. Pondweed was not observed until the time of the Begonia Festival in mid September, $31 / 2$ months after sandbar closure. This delay was unusual compared to previous years when pondweed dominated for much of the season. Presumably, pondweed had difficulty in becoming established because of the lack of fine sediment and ooze on the lagoon bottom after the higher, more normal stormflows of the rainy season. Most of the pondweed appeared to be destroyed by the Begonia Festival activities in 1993, unlike previous years. However, it came back quickly and was at a seasonal high density just two weeks after the Begonia Festival. The filamentous algae had bounced back immediately after the Begonia Festival, presumably with the lack of competing pondweed.

Floating algae was only a very minor occurrence throughout the summer and fall of 1993 as in 1992. The exception was in early August when algae covered $35 \%$ of the surface in Reach 3 and $30 \%$ of the surface in Reach 2. It was gone two weeks later, however. The waterfowl apparently did a good job as biological controllers of pondweed and algae. No aquazine was required for algae control in 1993. The geese did not appear to feed so much on algae in 1993 as they did immediately after the no bird-feeding signs went up. In 1993, bird-feeding made a strong comeback.

Fecal bacterial levels were at an all time high during the summer of 1993, relative to the previous 3 years. Fecal coliform counts were above the safety standard during all monitoring except for one occurrence at the railroad trestle in August. The bacterial levels in the lagoon in-flow at Nob Hill were significantly higher than in 1992, as well. Two factors that increased fecal coliform were probably the two bridge constructions upstream and the increased in-flow that better carried the bacteria downstream from the pigeon colony at Soquel Avenue bridge. An additional factor probably was the three-fold increase in pigeons roosting on the railroad trestle.

No new management recommendations were forthcoming in this report. The most critical recommendations yet to be followed from past reports would be 1) better education/enforcement of the no bird-feeding ordinance and 2) the installation of gutters on the lagoon-side of the restaurants to capture garbage and excrement-laden water to be transported away from the lagoon. These measures will reduce the nutrient and bacterial inputs to the lagoon.

## LAGOON AND ESTUARY FORMATION

Sandbar Construction, 1993. Appendix A provides pictures of the various activities associated with sandbar closure.

The City obtained a multiple-year Fish and Game Permit (Appendix B) to close the sandbar. It stated that no vehicles were to enter the wetted creekbed except within 25 feet of the flume. The Creek was flowing east of the flume across the beach to the rock jetty as in 1992. The stream went laterally east from the flume and parallel to the coastline for approximately 150 meters and bent abruptly south at the jetty to empty into the surf. It was decided that fish in the east-coursing channel across the beach would be herded back into the lagoon before the sandbar was constructed around the lagoon.

17 May 1993. The periphery of the estuary was walked in search of tidewater gobies. None were observed. Fish that may have been in the eastward channel were herded back into the main estuary with a l/4-inch mesh seine that extended the full width of the channel at the advisement of the Department of Fish and Game. We saw one staghorn sculpin in the channel and none down at the jetty during this operation. Then sand was quickly pushed across the channel by Mr. Casalegno to cut it off from the lagoon so that the sandbar could be constructed. Unlike the previous year, the lagoon bottom was firm rather than soft with ooze. The main channel was also deeper than 1992. These changes were undoubtedly due to scour of the higher winter flows of winter, 1992-93. There was no fish passage overnight. A ditch was dug adjacent to the flume to receive lagoon overflow.

18 May 1993. By 0600hr, the sandbar had been opened and was draining through a channel adjacent to the flume. It was 15 feet wide at the upper end and 30 feet wide at the surf. The lagoon looked like a creek channel once again. Mr. Casalegno had to close the lagoon early to prevent kelp from backwashing in. He continued to fill in the blocked off channel that had meandered toward the jetty. Jim Turcotte opened both ends of the flume. The outer half was full of sand. He opened all the portals on top of the flume. He and others used pumps to force water through the portals to flush out the sand. They were successful.

19 May 1993. Four City employees and myself were ready to begin raking at 0600 hr when the sandbar was opened. The flume was open all night after being unplugged by 1500 hr the previous day. A coarse screen covered the flume entrance that would allow adult and smolt-sized steelhead to pass through. There was a problem with a back eddy at the entrance of the trench through the sandbar. Mr. Casalegno filled in a hole there to facilitate flushing. The sandbar was closed at 0830 hr , which was a bit late. A small amount of saltwater entered the lagoon before closure. Sand continued to be accumulated for the sandbar. There was less sand to work with than previous years.

20 May 1993. Two City employees and myself began raking soon after 0600 hr when the sandbar was opened. The flume had been open overnight for good fish passage. The eddy problem returned and Mr. Casalegno filled in the hole once again. After the margins of the lagoon became exposed above the water line, the cove near the restaurants was deepened and contoured up to the stairs for the pedal boat operator. The pedal boat operator specified the grade there and was satisfied. We emphasized to him the need to maintain a full summer lagoon. He understood. A hump between the cove and the flume was flattened out. The sandbar was plugged at 0810 hr . Sand continued to be accumulated.

21 May 1993. Five City employees were available with myself to rake the kelp and seagrass out of the lagoon. The flume was open with good fish passage overnight before sandbar opening. The City staff worked hard in raking the lower lagoon while $I$ went upstream of the bridge to free up deposits of plant material and pull them into the current. Many steelhead smolts were seen under the bridge and upstream to Noble Gulch. The lagoon bottom did not have the soft ooze that existed the previous year. I raked out the hole at the mouth of Noble Gulch to prevent anaerobic decay of plant material later in the summer. More than $90 \%$ of the plant material had been removed from the lagoon. One dead stickleback was observed in branches that had been raked onto the sand. The west side of the lagoon near Venetian court was contoured above the water line. The sandbar was closed at 0910 hr .

24 May 1993. The sandbar had remained closed over the weekend. The flume was open this morning and was observed open on Sunday morning. The sandbar was opened and I did some final raking in deep locations around the Stockton Avenue Bridge and around the logs under the bridge. As the lagoon level dropped, some steelhead and stickleback became trapped in depressions near the east pier of the bridge. I noticed when I saw fish flopping on the sand. I rescued all but 2 steelhead smolts and 15 sticklebacks which suffocated on the sand. Mr. Casalegno contoured the sand around the flume entrance. Ed Morrison thought it best to hold off the preparation of the plastic liner around the flume until the next day. Rain was forecasted that night, and there was concern that the sandbar would be lost. Sandbar construction had taken too many days this year. Fear of stormflow damage delayed the process. The waterfowl appeared very hungry. I herded them upstream where more plant material was available. However, they returned to the lower lagoon. A school of 10 steelhead smolts were observed in the lower lagoon after the sandbar was plugged. The side channel to the jetty was now 3/4 filled in.

25 May 1993. It rained overnight. The flume was able to receive the full streamflow, though the lagoon level approached the top of the flume. The sandbar was again opened today. However, the plastic liner was not prepared because more rain was forecasted.

26 May 1993. The sandbar was opened a last time, and the plastic liner was positioned at the flume entrance to prevent undercutting of the flume. The plastic was covered with a thin layer of sand. The screens were left over the flume entrance. It rained that morning.

27 May 1993. The lagoon was full to a height of approximately 1 foot above the base of the flume entrance. Water was passing freely through the screened entrance. Fish passage was good. The shroud was not installed because of the high streamflow this year.

1 June 1993. One side of the flume entrance was closed with plywood. The other side was screened and fully open. The water level was approximately 1 foot above the base of the flume entrance. Fish passage was good. Gage height $=1.60$.

3 June 1993. Flume entrance with 2 boards on either side. Remainder of the opening screened with 6 "x6" mesh. End ribs of screen removed at water line to make adult fish passage easy. The entrance and exit of the flume were 12 inches deep. Gage height $=1.79$. Fish passage was good. Two steelhead smolts were observed at the mouth of Noble Gulch. A gray suspension was exiting Noble Gulch. It looked like cleaning water. Nine piles of dog excrement were present at the trestle park. Seven piles were counted along the path. Ten to 12 dogs were walked by their owners along the path mostly in the morning. For further details, refer to water quality in Appendix $D$.

4 June 1993. At 2000 hr the lagoon level was to the top of the inner ceiling of the flume. It could not pass much more water with the 2 boards in either side. Estimated streamflow 12-15 cfs.

5 June 1993. It began raining this Saturday morning at 0900hr. By lloohr all of the boards had been removed from the lagoon entrance. The lagoon height went to 1 foot above the top of the flume. The sandbar remained intact.

7 June 1993. Two boards on each side with screens were reinstalled on flume entrance as were present on 4 June.

## Recommendations Regarding Sandbar Construction

1. Bring Tim Calahan back to the lagoon-raking crew if he wishes to return. His sense of humor and light-heartedness were sorely missed in 1993.
2. Evaluate the structural integrity of the flume and its supports. Repair cracks and supports as necessary.
3. During sandbar construction, continue to close the lagoon each day before the incoming tide can wash salt water and kelp into the lagoon. Re-open the sandbar and unplug the flume, if necessary, each morning at low tide to drain out more kelp.
4. Continue to rake as much kelp and sea grass out of the lagoon as possible before final closure, including plant material trapped under the restaurants and in depressions around the bridge and at the mouth of Noble Gulch.
5. Dispose of kelp from the lagoon during sandbar closure in the bay rather than bury it in the sandbar. Disperse it up and down the beach so as to spread it out. Continue to include this in the Fish and Game permit for sandbar construction. County environmental health has no problem with this so long as kelp is spread out over a wide area (J. Ricker, County Env. Health, pers. comm.).
6. Seal off storm drains on the west side of the street in front of the Esplanade, as well as the portals in the walkway to the beach between the Beach House and Zelda's. This should be the case from May 15 to after the clean-up from the Wine Festival in mid-September. Seal off any storm drain pipes leading from the street to the lagoon in front of the restaurants. This will reduce pollution from restaurant clean-up.
7. Attempt to make the area around the flume the deepest part of the lagoon so that heavy salt water will collect there and be pulled out easily by the shroud.
8. Continue to maintain the portal in the flume entrance for adult steelhead out-migration until June 1 , while maintaining a notched top plank for steelhead smolt out-migration until July 1.
9. Continue to maintain the 1-foot high plank inside the flume until July 1 for smolt fish passage.
10. Continue to maintain an 8 -inch depth at the outlet of the flume until July 1. Install two 4"x 4" planks in the outlet if necessary as per Fish and Game's suggestion.

## Sandbar Breaching During the 1993-94 Rainy Season.

Thanks to the work of Ed Morrison, Jim Turcotte and other City employees, we were able to maintain an intact sandbar with streamflow passing through the flume until a prolonged rainy period began on 9 December 1993. There had been small storms during the nights of 14-15 October, 10-11 November and 28-30 November. The headwaters of Soquel Creek received an estimated $5+$ inches of rain during 9-14 December. This was the first period that fish passage was good to the spawning areas above Soquel Village. Ed Morrison saw adult salmonids outside the flume exit the evening of 11 November after the rain. Steelhead were caught in the lagoon by Joe Urbani and Daniel Morrison, Ed's son, the first weekend after opening day of steelhead fishing season, 20-21 November. Another was caught by Daniel son on Thanksgiving Day. These catches indicated that the flume was very passable to adult steelhead.

A perimeter fence was not placed around the flume entrance as recommended in the previous monitoring report. The feeling was that it would clog with algae and would require too much maintenance. The alternative approach was to leave the screening off the flume in the fall to allow algae to better pass through the flume. This worked well. There was not the density of aquatic plants, particularly pondweed, in the 1993 lagoon compared to 1992. Thus, clogging was not as big a problem.

9 December 1993. I was notified at 0630 hr that a breach was necessary. The flume with 2 boards out on either side of the flume entrance could not pass enough water. According to Ed Morrison, at 0630 hr the lagoon had filled and extended out onto the beach. No notch had been cut because the tractor was in the shop for repair. It had broken down the previous week while being used to cut the sandbar notch. Morrison had called for the backhoe at 0630 hr . However, it was not needed because a notch was cut by shoveling that focused the water and began the sandbar breach. Upon my arrival at 0720 hr , there was an estimated 125 cfs emptying through the sandbar. The lagoon elevation was 4-5 inches above the piling bolt. The lagoon had risen to about 10 inches above the bolt at its highest. The lagoon had just overtopped the bulkhead from the Stockton Avenue Bridge up to Noble Gulch. The bulkhead had suffered damage under the bridge. No flooding had occurred at the low-lying residences on Riverside Avenue. The gage height at 0800hr was down to 2.8. By 0930hr the gage height was down to 1.6 .

## Recommendations Regarding Sandbar Breaching

1) Recommend to the owners of 443 Riverview that they build a better bulk head to replace the old sandbag wall.
2) The notch in the sandbar should be cut slightly lower than the piling bolt.
3) Just before the first anticipated storm of the fall season, remove 1 board from each side of the flume. Clear the exit to the flume by removing the plate from one side of the exit. Clear the sand away from the top of the flume back to the first hole cover. Remove the cover and remove the 1 -foot plank inside the flume. Replace the hole cover. By October 1, install a temporary perimeter fence in the lagoon around the flume entrance to prevent clogging of the flume with plant material unless the City is willing to leave the flume unscreened during stormflows. The fence should be 15 feet from the entrance and extend at least a foot higher than the top of the flume. Clean the pondweed and algae off the fence after each minor stormflow.

Replace the boards after each small storm and remove them before each storm until the sandbar is eventually breached during later, larger storms after approximately Thanksgiving. Remove the first flume portal cover if the entrance of the flume cannot handle the
volume of the stormflow in October and early November. After the stormflow subsides, replace the portal cover until the next minor storm.
4) If the sandbar breaches early in the rainy season, followed by a period of $2-4$ weeks of a reformed sandbar that prevents water exchange with the ocean, attempt to pull the decomposing kelp out of the stagnating lagoon. Open the flume and encourage streamflow out with the shroud installed.
5) If a stagnant, kelp-filled lagoon forms in fall after an early breach and a dry period, do not empty the lagoon by breaching the sandbar. Instead, use the flume to pull salt water out. Breaching of the lagoon will increase the opportunity for more kelp to enter the lagoon and probably will not empty the entire lagoon at any rate. Fish passage need not be maintained through the flume. In fact, passage from the ocean into the lagoon should be discouraged until sufficient stormflows develop to allow good spawning passage up the creek. If adult salmon or steelhead come in too early, they will become stranded in the lagoon. Artificial breaching without stormflow may strand adult fish.

The lagoon was divided into 3 reaches. Reach 1 extended upstream from the flume to Stockton Avenue Bridge (Figure 6). Reach 2 extended upstream from Stockton Avenue Bridge to the railroad trestle. Reach 3 extended upstream to a point just past the Shadowbrook Restaurant. Appendix A provides photos of pondweed and algae through the summer and fall months.

Table 1 provides a summary of pondweed and algae densities for 1993. In 1993, pondweed did not begin to grow until the time of the Begonia Festival in September. It had gotten started in July the previous summer. Filamentous algae did not get started until the beginning of July. However, it rapidly grew during the warm, sunny month of July, with the most noticeable production during the first 2 weeks in Reach 1 with relatively less in upstream reaches. By 27Jul93, all three reaches had between 80 and $95 \%$ of their bottoms covered, with thickness from 2 to 4 feet from upstream to downstream. This rapid algal production was partially due to the lack of competition with pondweed, which was not present. Within 2 weeks on 9Aug93, the algae had largely died off in Reaches 1 and 2 where it had been most abundant. It had probably used up the nutrients and crashed. Reach 3 still had a sizable amount of filamentous algae with the highest surface algae constituent for any reach the entire summer. Surface algae covered 35\% of the surface in Reach 3 and $30 \%$ in Reach 2. Reach 1 had 5\% of the surface covered. Though there was a scarcity of algae below surface in Reaches 1 and 2, surface algae was present. We wonder if it blew down from Reach 3.

The filamentous algae came back more slowly in the next 2 weeks of August in Reaches 1 and 2, with significant reduction in Reach 3. However, Reach 3 still had the most filamentous algae on 23Aug93. By early September, the algae density had become more equal in all 3 reaches. But more than $50 \%$ of the lagoon bottom had nothing more than a thin algal film. Surprisingly, on Begonia Festival Day, 12Sep93, all of the algae was associated with pondweed that had rapidly grown to $2-3$ feet in height in just 2 weeks. The lagoon bottom was 70-75\% bare in Reaches 1 and 3, with $50 \%$ bare in Reach 2. The boards on the flume were not pulled for the Festival. So the lagoon stayed full and cooler afterwards, compared to past years.

It appeared that activity of the Begonia Festival destroyed much of the pondweed in the 3 reaches and gave the filamentous algae a chance to bloom again in the last half of September. However, by the end of September, the pondweed had returned and was at its highest density and height of the summer on 60ct93. All of the below-surface algae was associated with pondweed. Surface algae was at its maximum of $10 \%$ coverage in Reach 1 for most of September and the first part of October.

Monitoring in the last half of October and early November showed a seasonal decline in pondweed, with filamentous algae dominating the lagoon bottom as it had early in the season. There was no surface algae.

Noble Gulch continued to provide a nutrient in-flux to the lagoon in 1993, as indicated by the filamentous algal bloom that existed at its mouth all summer.

Plant growth in the 1993 lagoon was very different from 1992. The physical conditions were different in 1993. At sandbar closure, the lagoon bottom was cleaner without the layer of ooze found in 1992. The bottom was coarser sand and gravel in 1993 due to higher winter stormflows. The lagoon was deeper in 1993 with better management of the flume entrance. There was 10 times the flow volume passing through the lagoon in 1993 compared to 1992. The lagoon was $1-3$ degrees $C$ cooler all summer and fall, compared to 1992. It took much longer for pondweed to become established because it prefers finer sediments. Filamentous algae bloomed earlier and quicker in 1993 than 1992 without the competition from pondweed. But once the algae crashed in the first third of August in the lower 2 reaches, it never came back to its hig density of July. Pondweed peaked in early october, 1993, and then declined. In 1992 it became abundant in early September and continued dense right through October. In 1993 the walking of the floats in the Begonia Festival seemed to have temporarily eliminated much of the pondweed, but not in 1992. Two weeks later the pondweed density was at a seasonal high.

In 1993 as a whole, there were lower densities of aquatic plant life than in 1992. However, the rapid growth of filamentous algae in July and rapid growth of pondweed in early September, 1993, indicated significant episodes of plant productivity.

Table 1. Changes in Pondweed and Algae Densities, 1993.


## Recommendations for Control of Algae

1. Establish criteria which may be used to decide when algae is excessive, keeping in mind that pondweed and algae provide necessary cover for fish from bird predators. If aquazine is used in mid-summer, apply a low dose to the lower lagoon that will clear out the algae, making it easier for fish to move around and feed on invertebrates, as well as give pondweed a competitive advantage over the algae.
2. Choose to skim off floating algae until just before the Begonia Festival, at which time aquazine may be used to reduce algae before people walk around in the lagoon. The skimming off of algae removes the nutrients stored in the algae and may slow future algal growth. Use of aquazine returns the nutrients to the lagoon during bacterial decomposition. This release of nutrients stimulates faster algal growth afterwards.

Offer to donate funds to a volunteer group to skim algae off the lagoon surface instead of paying to have the lagoon treated with aquazine.
3. If a mid-summer treatment of aquazine is deemed necessary, apply it in a low dose ( 3 pounds or less) well below the stockton Avenue Bridge so that no pondweed is killed and only Reaches 1 and 2 will be affected. If pondweed is not present in Reaches 2 and 3 at the time of aquazine treatment, algae control will leave little or no cover for fish, requiring special concern about aquazine spreading upstream of Reach 1 after treatment. In such cases, we recommend that just 2-3 pounds of aquazine be applied near the flume only and in early morning before the onshore breeze develops.

## ANALYSIS OF FECAL BACTERIA MONITORING

## Fecal Coliform/streptococcus counts from santa cruz county Monitoring

The summer months were focused on, from the time of sandbar closure (usually mid-May before Memorial Day weekend) to the Begonia Festival (first weekend in September). These are the months in which recreational use of the lagoon would potentially be highest. These are the months in which reductions in fecal bacterial counts would allow swimming in the lagoon. A management goal is to reduce fecal coliform counts below the $200 / 100 \mathrm{ml}$ level, which is deemed a hazard to health by the Environmental Protection Agency. If this can be done, the lagoon may once again be used for swimming.

Summer months of 1990, 1991, 1992 and 1993 were compared in order to detect any trends or improvements that may be related to initiation of the Lagoon Management and Enhancement Plan.

The Department of Environmental Health in Santa Cruz County collected weekly samples at primarily the flume entrance in the Soquel Creek Lagoon. Other weekly stations were on the Creek near Nob Hill and in Noble Gulch above the tunnel. Additional stations in the lagoon were occasionally monitored at the mouth of Noble Gulch and at the railroad trestle. Their data were analyzed to evaluate bacterial levels. The discussion will focus primarily on Reach 1 at the flume and at upstream end of the lagoon at Nob Hill because sampling was more restricted in 1993 than previous years. Reach 1 (lower lagoon) spanned from the flume to the Stockton Avenue Bridge. Reach 2 (middle lagoon) included the area from the Stockton Avenue Bridge to the railroad trestle. Reach 3 (upper lagoon) went from the trestle upstream to just beyond the Shadowbrook Restaurant.

The bacterial sampling station at the flume was used to represent counts in Reach 1. The station at the trestle was used to represent counts in upper Reach 2 and lower Reach 3. It was monitored 7 weeks in 1993. No station was present in 1990 or 1991 near the mouth of Noble Gulch until mid-September, 1991. The monitoring at the mouth of Noble Gulch continued through 1992. That station was monitored twice in 1993, making comparisons difficult. The county no longer measures streptococcus bacterial concentrations. It must be understood that concentrations of bacteria may vary considerably from one place to another. Therefore, the data only indicated bacterial levels in a general way.

Computer print-outs provided by the county of actual bacterial counts are in Appendix C.

Fecal Bacterial Counts in Reach 1
Week 3 was the week in which the sandbar was closed. Week 20 was
a week after the Begonia Festival. Counts in 1993 were generally at least twice those in 1992 (Figure 1). Exceptions were week 10 and 14. Summer, 1993, broke the pattern of drastic increases in coliform bacteria in week 14. Therefore, fecal coliform counts in 1993 were higher than the allowable level for swimming in $100 \%$ of the weekly samples at the flume.

Fecal Bacterial Counts in Upper Reach 2 and Lower Reach 3
Fecal coliform counts in 1993 were higher than those in 1992 in 6 of the 7 weeks measured in both years (Figure 2). In 1993, coliform counts were above the $200 / 100 \mathrm{ml}$ cutoff for environmental safety in 6 of 7 ( $86 \%$ ) weekly samples. Only in mid-August was it below 200. In 1992, the samples were below 200 in 61\% of the time in Reach 2.

Fecal Bacterial Counts in Noble Gulch
The monitoring station was located at the entrance of the tunnel at Bay Avenue. Fecal coliform counts fluctuated wildly in 1993, as was the case in previous years. There were some weeks when it was quite low and others when they were relatively high (Figure 3).

Fecal Bacterial Counts in Reach 3 at the Mouth of Noble Gulch
In 1993, only 2 weeks monitored. However, it appeared that there was a concentrated source of coliform bacteria there in week 18 (7Sep93) (Figure 4). The County staff noted the presence of saw dust.

Comparison of Fecal Coliform Counts at the Flume, Railroad Trestle and the Mouth of Noble Gulch, 1993.

Fecal coliform bacterial counts were consistently higher in Reach 1 than in Reach 2 when both places were monitored. This followed the pattern of previous years. There were not enough measurements at Noble Gulch to make comparisons.

Comparison of Fecal Coliform Counts at Nob Hill in 1992 and 1993.
Counts were higher in 1993 in 12 of 16 weeks in which data were available for both 1992 and 1993. The rain in week 6 of 1992 made levels higher then. In the remaining 3 weeks, counts were essentially the same for both years. In 10 of 16 weeks in 1993, coliform counts were above 1000.

Conclusions from Fecal Bacterial Monitoring
In 1993, coliform levels were generally the worst of the last 4 years of monitoring. There was only 1 week in August in Reach 2 when the water met the health standard for human contact.

We had concluded that fecal bacterial counts were reduced in 1991 compared to 1990 in reaches 1 and 2 (Alley 1992). Counts in 1992 were similar to those in 1991. In Reach 1 the counts were at unsafe levels for swimming during 82\% of the weeks in 1991 and 94\% of the weeks in 1992 from the time of sandbar closure to the weekend of the Begonia Festival. On the other hand, in Reach 2 at the trestle, counts were at safe levels of coliform bacteria $65 \%$ in 1991 and 61\% in 1992 during the same time period.

Reasons for the dramatic increase in fecal bacteria counts in 1993 may be due to at least 3 factors. According to John Ricker at the Santa Cruz County Environmental Health Department, two factors were probably the disturbances at the two bridge modifications upstream of the lagoon and the increased streamflow through the summer that better carried the bacteria downstream from the pigeon colony at Soquel Avenue bridge. An additional factor probably was the three-fold increase in pigeons roosting on the railroad trestle. An average of 16 pigeons were there during each monitoring in 1993, with a maximum of 30 observed at one time.

Monitoring of Dog Excrement - A Nasty Job, But Somebody's Got to Do It.

On 3 June, the first monitoring day after sandbar construction, 9 piles of dog excrement were present at the trestle park (private property). Seven fresh piles were counted along the path that parallels the lagoon. Ten of the 12 dogs observed on the path during the 2 hours that morning were ushered by their owners. On 17 June there were 4 fresh piles on the path. On 29 June there was one fresh pile on the path and 2 fresh piles at the trestle park. On 9 August there were 11 piles of excrement at the trestle park and 2 fresh piles along the path. The grass had been cut and the excrement removed from the trestle park prior to the Begonia Festival. Presumably the residents along the path clean up the excrement because the piles observed on the path are usually fresh. Who knows where the excrement is disposed of?

## Recommendations Regarding the Monitoring and Reduction of Fecal Bacteria

1. Pass an ordinance that prohibits walking of dogs along the path adjacent to the lagoon. This seems consistent with the dog ordinance for the beach area.
2. Encourage the mobile home park to allow the removal of domestic ducks that use Noble Gulch.
3. Remove the domestic ducks at the mobile home park on Noble Gulch with the cooperation of the residents.
4. Continue to enforce the no bird-feeding ordinance at the lagoon. Discourage feeding of fish at the lagoon, as well.
5. Set up a volunteer program to remove the kelp from Reaches 1 and 2 on a weekly basis from April 1 to lagoon closure as stated in the management and enhancement plan. Decomposing kelp adds nutrients and bacteria to the lagoon and is nearly impossible to remove when it becomes mushy.
6. Dispose of kelp from the lagoon during sandbar closure along the beach as in 1992 and 1993 rather than bury it in the sandbar as in 1991. Disperse it up and down the beach to spread it out.
7. Continue to open and close the lagoon during outgoing tides and before incoming tides, respectively, during the 2-3 days that are required for sandbar closure.
8. Spend the necessary time to remove as much kelp as possible from the lagoon with hand tools during the 3 or more days that are required for sandbar closure.
9. Remove the remaining domestic geese and ducks from the lagoon and transplant them to an acceptable private pond.
10. Maintain weekly fecal bacteria sampling stations at the flume, the park at Stockton Avenue Bridge (in front of Mrs. Hubback's house, and near the railroad trestle for the period, May 15 to September 15.
11. Discuss the feasibility of opening Reaches 2 and 3 to swimming if fecal coliform counts are consistently less than 200/ 100 ml in the samples.
12. Continue to maintain a log of complaints/reports of pollution entering the lagoon, as well as excessive algae. Record the date, time and names of the concerned parties.
13. Choose to manually skim off floating algae from the lagoon instead of using aquazine, except possibly before the Begonia Festival in 1993.
14. Continue to seal off storm drains on the west side of the street in front of the Esplanade, as well as the portals in the walkway to the beach between the Beach House and Zelda's. This should be the case from May 15 to after the clean-up from the Wine Festival in mid-September.
15. Examine the feasibility of sealing the storm drains at the Railroad trestle and continue to seal the drain under the restaurants during the period of sandbar closure.
16. Request that bypass tubes be connected to the drain pipes from the roof of Larry's Surf and Turf Restaurant such that they drain way from the lagoon for the period, May 15 until the sandbar is breached in the fall/winter. Request that they construct a gutter system under their windows which will prevent window-washing water from entering the lagoon.
D.W. ALLEY \& Associates
17. Require that Sea Bonne and Margaritaville Restaurants attach gutter systems to the concrete wall that will prevent wash-water and food particles from entering the lagoon when they hose off their decks.
18. Require that repairs of plumbing under the Esplanade restaurants be done with double pipes to prevent sewage leaks.
19. Continue the annual inspection program for evaluating the plumbing under Esplanade restaurants. Continue to have a City building official. Please keep a record of the inspections for the consultant's reference.

WATER QUALITY MONITORING, 1993

## Rating Criteria

Water quality parameters were rated according to the tolerances of steelhead. This was because other fishes were more tolerant to low oxygen, higher salinity and higher temperatures than steelhead. Stress to freshwater acclimatized steelhead would probably not occur until conductivity levels reach 12,000 to 15,000 umhos with sudden increases in salinity to 10-12 parts per thousand. Water temperatures above $22 \mathrm{C}(72 \mathrm{~F})$ and oxygen levels below 5 parts per million (mg/l) are thought to stress steelhead. However, steelhead have been found surviving in pools in the Carmel River at 1-2 ppm for 1-2 hours at dawn. Based on 1988 monitoring, steelhead appear to survive in Soquel Lagoon at water temperatures of $23-25 \mathrm{C}$ for 1-2 hours toward the end of the day (Habitat Restoration Group 1990). Critical oxygen levels were those in the lower 0.25 meters from the bottom where steelhead would inhabit. Morning oxygen levels below $2 \mathrm{mg} / \mathrm{L}$ were rated critical. Morning oxygen levels below $5 \mathrm{mg} / \mathrm{L}$ were rated poor. Morning oxygen levels of 5 to $7 \mathrm{mg} / \mathrm{L}$ were rated fair with above 7 ppm rated as good. Morning water temperatures in the lower 0.25 meters of the water column of less than 20 were rated good while those $20-21.5$ C were rated fair. Temperatures above 21.5 C were rated poor. Water temperature may rise 3-4 degrees $C$ by the end of a sunny day.

High levels of dissolved carbon dioxide in water will inhibit absorption of oxygen by fish. However, in alkaline conditions that exist in Soquel Creek Lagoon, carbon dioxide is poorly dissolved and believed not to be a problem (Jerry Smith, pers. comm.). Therefore, monitoring of carbon dioxide was unnecessary.

Lagoon depth was monitored with the staff gage on the eastern bulkhead, upstream of the Stockton Avenue Bridge. Readings less than 1.85 were rated poor. Readings between 1.85 and 2.2 were rated fair. Readings above 2.2 were rated good. These criteria were somewhat arbitrary, being based on an as yet poorly defined relationship between lagoon depth and associated fish cover, water temperature and algae growth. If the upper lagoon becomes too shallow, steelhead habitat is eliminated and algae growth may be stimulated.

## Results of Water Quality Monitoring After Sandbar closure

Appendix $D$ provides detailed data on water quality. Table 2 summarizes conditions at each monitoring time, based on the rating criteria.

Table 2. Water Quality Ratings in Soquel Creek Lagoon, 1993.

| Date | Flume Passage | Gage Height | Water Temperature | Oxygen | $\begin{aligned} & \text { Salin- } \\ & \text { ity } \end{aligned}$ | $\begin{aligned} & \text { Lagoon } \\ & \text { In-flow } \end{aligned}$ (cfs) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 June93 | open | poor | 2 boards in on | each si | de + scr |  |
| 3June93 | open | poor |  |  | good | 12-15 |
| 3June93 | open | 1.79 | eflow 12-15 |  |  |  |
| $5 \mathrm{June9} 3$ | Rained h | hard in mo | ning. All boa | rds rem | ed. Ne | arly |
|  | lost san | ndbar. Mor | rison and Turc | tte sav | d it! |  |
| $7 \mathrm{June9} 3$ | 2 boards | s reinstal | ed both sides | s on 3 | June. |  |
| 12Jun93 | Rained | previous n | ght. |  |  |  |
| 17 Jun93 | open | poor | good | - | good |  |
| $29 \mathrm{Jun93}$ | open | fair | good | good | good | 4-5 |
|  |  | 2.00 |  |  |  |  |
| 16Jul93 | open | fair | good | good | good |  |
| 27Jul93 | open | fair | fair | good | good | 3.5-4 |
|  |  | 1.94 | fair* |  |  |  |
|  |  |  | good* |  |  |  |
| 9 Aug93 | open | fair | poor | good | good | 3 |
|  |  | 1.94 | fair | good |  |  |
|  |  |  | good | fair |  |  |
| 23Aug93 | open | fair | fair | good | good |  |
|  |  | 1.97 | fair | good |  |  |
|  |  |  | good fair | poor | good |  |
| 3 Sep93 | open | fair |  | good | good | $\begin{aligned} & 1.5- \\ & 1.75 \end{aligned}$ |
|  |  |  |  | fair |  |  |
| 12 Sep 93 | Begonia | Festival |  |  |  |  |
| 12 Sep 93 | open | fair | fair | good | good |  |
|  |  | 2.18 | fair | fair |  |  |
|  |  |  | good | fair |  |  |
| 13Sep93 | open | fair | fair | good | good | 1 |
|  |  | 2.13 | good | poor |  |  |
| 20Sep93 | open | fair | good | good | good |  |
|  |  | 2.17 |  | fair |  |  |
| 27Sep93 | open |  | - | - | - |  |
|  |  | 1.78 |  |  |  |  |
| $50 \mathrm{ct93}$ | Mix up. | 2 boards | removed. |  |  |  |
| $60 \operatorname{ct9} 3$ | open | poor | - | - | - | 1 |
|  |  | re-install |  |  |  |  |
| $80 \mathrm{ct9} 3$ | open | poor |  |  |  |  |
|  |  | 1.19 |  |  |  |  |
| 140ct93 | open | fair | Rained previou | night. |  |  |
|  |  | 1.94 |  |  |  |  |
| 160ct93 | open | fair | boards had be | n remov |  | 3.5 |
| 200ct93 | open | poor | till 2 boards |  |  | 1.3 |
| 200ct93 | open | 1.80 | 112 boar |  |  |  |
| 10-11Nov93 | 3 Rained | d. Morris Kept | n removed boar he sandbar inta | s and d ct! | bris. | 40-50 |
| 27Nov93 | open | fair |  |  |  |  |
|  |  | 1.89 |  |  |  |  |
| 28Nov93 | Rained. | Morrison | removed board, | maintai | ned sand | bar. |
| 9 Dec 93 | Sandbar | had to be | manually breach | ed. |  | 50-75 |
| * If 3 rat | tings ar | ce listed, | they refer to | eaches | , 2 and | 3. |

Lagoon Level. As of the first monitoring, 7 days after sandbar construction on 26May93, until sandbar breaching on 9Dec93, 19 monitoring periods were performed at approximately 2-week intervals, except around times when boards were removed and replaced. Fair lagoon depth occurred on 12 occasions. placement of plastic sheeting over the flume boards and having all of the flume boards in place improved lagoon depth. Poor lagoon depth occurred on 7 occasions. With the exception of an 8 -day period in mid October in which the lagoon was very shallow, the city did an excellent job of maintaining a deeper lagoon in 1993. Late rains in June and early rains in November made it difficult to maintain the sandbar and lagoon intact. The City staff did an excellent job of passing the stormflows through the flume. When the sandbar finally had to be breached in December, there was a 5-6 day period of good rain and good stream passability for steelhead or coho salmon spawning. Smolts heading out had a healthy transition into the Monterey Bay.

Flume Passability. According to the Management Plan, fish passage was to be maintained until July 1. Passage for steelhead smolts was in fact excellent all summer and fall. There was proof that adult steelhead could pass through the flume into the lagoon because adults were caught in the lagoon in November, when the sandbar was still intact.

Water Temperature. Lagoon water temperature was fair or good all summer and fall, except for one poor rating at the flume on 9 August. This was much better than in 1992, when in July and August the lagoon was warmer and entered the poor category much of the time. Pondweed and algae grew rapidly during this period. By September 1 , the lagoon began to cool and was rated mostly fair until September 19, when water temperature was rated good until sandbar breaching.

Dissolved oxygen. Critical oxygen levels are lowest in the early morning before plant photosynthesis may occur to produce oxygen. This was the time that levels were measured and rated. Interestingly, early morning oxygen levels in 1993 were consistently lower than in 1992. Oxygen levels were rated "fair" or "good" all summer and fall except for "poor" ratings at the mouth of Noble Gulch on 23 August and at the trestle the day after the Begonia Festival. Steelhead may have moved upstream to find better oxygen conditions at this time. Although the 3.82 $\mathrm{mg} / \mathrm{L}$ oxygen level found there after the festival was considered stressful, it was well within the steelhead's tolerance range.

Salinity. Salinity was no problem all summer. In fact, there was so much streamflow at the time of sandbar closure (12-15 cfs baseflow), the shroud was not necessary.

Conductivity. It was not a problem during the monitoring period.

## Recommendations to Improve Water Quality and Fish Habitat in the Lagoon

1. Do not allow the pedal boat operator to dictate the lagoon level.
2. Maximize lagoon depth while maintaining passage through the flume for adult steelhead until June 1 and steelhead smolts until July 1. If the lagoon level begins to drop below the notch for steelhead smolts on one side of the flume because of the hole for adult steelhead on the other side after June 1 , close up the hole for adults. Close up the adult hole by July 1 in any event. If adult steelhead are seen in the lagoon after June 1 when the hole has been closed up, open the hole until the adults out-migrate.
3. After July 1, do not open the flume exit if it closes unless flooding is eminent. Install plastic sheeting on the outside of the flume boards to prevent leakage into the flume. Put as many boards as possible into the flume entrance to raise the lagoon level as much as possible.
4. If the lagoon level is reduced for the Begonia Festival, remove the board on the flume on the Friday before the festival and re-install it immediately after the festival clean-up. Avoid removing any boards for the Festival, if at all possible.

## BIRD CENSUSING

Results of bird censusing in 1992 and 1993 were not directly comparable to those in 1991 because in 1991, censusing was carried out throughout the day. In 1992 and 1993, most censusing occurred early in the morning. In 1992, 5 of 16 censusings (31\%) were done later in the morning and afternoon while in 1993, 7 of 19 censusings (37\%) were done later. In early morning, some ducks were probably roosting and not in the water. At times, a large group of ducks were roosting on the beach near Venetian Court in the morning and were not counted.

Comparisons were made regarding bird distribution between the results obtained in 1991 (Alley 1992), 1992 (Alley 1993) and 1993. In all three years, the highest bird use of the lagoon was in Reach 1, it being dominated by gulls, domestic geese and feral ducks (Table 3).

In 1992, there were 16 censusing before the sandbar breached (27May-27Oct) and 6 more after (5-12Nov). In 1993, there were 19 censusing (3Jun-27Nov93), with the breaching occurring 9Dec93. As in 1991 and 1992, birds were most concentrated in Reach 1 in 1993 (Table 3). However, the high density of pigeons roosting on the trestle in 1993 combined with fewer gulls bathing in Reach 1 during censusings had increased the relative density of birds in Reach 2.

Table 3. Comparison of bird densities by Reach in Soquel Creek Lagoon, including American Coots. Pigeons on the railroad trestle (Reach 2) were excluded in 1991 and included in 1992 and 1993.

| YEAR | DATES | \# OF CENSUSES | TOTAL BIRDS COUNTED | $\begin{aligned} & \text { PERCENT } \\ & \text { REACH } 1 \end{aligned}$ | $\begin{aligned} & \text { COUNTED BY } \\ & \text { REACH } 2 \end{aligned}$ | $\begin{aligned} & \text { REACH } \\ & \text { REACH } 3 \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1991 | $\begin{aligned} & \text { 19Aug- } \\ & \text { 130ct } \end{aligned}$ | 24 | $\begin{aligned} & 1746 \\ & (55 \text { coots }) \end{aligned}$ | 58 | 19 | 23 |
| 1992 | $\begin{aligned} & 27 \mathrm{May}- \\ & 270 \mathrm{ct} \end{aligned}$ | 16 | $\begin{gathered} 952 \\ (145 \text { coots, } \end{gathered}$ | $66$ <br> more coun | $\text { ted later) } \begin{aligned} & 20 \\ & \text { lat } \end{aligned}$ | 14 |
| 1993 | $\begin{aligned} & \text { 3June- } \\ & \text { 27Nov } \end{aligned}$ | 19 | $\begin{aligned} & 1266 \\ & (304 \text { coots) } \end{aligned}$ | 45 | 37 | 18 |

Gulls roosted on building roof tops along the Esplanade. Larry's Surf and Turf positioned 3 stationary plastic owls on their roof in summer, 1992, to discourage gulls from roosting there. The owls worked very effectively for the first couple of weeks. After that they had more limited effect. If the owls were made to rotate, they may be more effective. Also, they could be taken down periodically and re-installed after a few days to possibly improve their effectiveness. In 1993 the owls appeared to be totally ineffective. We counted 21 gulls roosting on the roof
during one census. Any bird excrement left on the roof and skywindows was washed into the lagoon each morning.

Refer to Table 4 for comparisons of average bird densities by groups between 1991, 1992 and 1993.

Nearly all of the censused gulls were in Reach 1, with them totaling $80 \%$ and $54 \%$ of the birds counted there in 1992 and 1993, respectively. The relative percentage of gulls in Reach 1 in 1993 dropped because there were fewer gulls (at least in the early morning) and more mallards and coots utilizing Reach 1. It was of interest that we observed fewer gulls using the lagoon for bathing in early morning in 1993 than 1992, though the average gull count on the beach was higher in 1993.

Over $90 \%$ of the pigeons were observed in Reach 2 , making up $30 \%$ and $50 \%$ of the birds censused there in 1992 and 1993, respectively. In 1993, 88\% of the pigeons were roosting on the trestle, and the remainder were at the east Stockton Avenue Park near Mrs. Hubback's house. Though pigeons were not regularly censused on the trestle in 1991 and were in 1992, there appeared to be fewer pigeons in 1992 than 1991. However, there was a significant increase in pigeons in 1993, with 3 times the number of pigeons counted in Reach 2 compared to 1992. In 1993, the average number of pigeons on the trestle was 16.2 with a standard deviation of 6.7 and range of $8-30$ birds.

Wild mallards fed primarily in Reach 3, though they were often seen in Reaches 1 and 2. They roosted most visibly along primarily the margins of Reach 2 on the bulkhead and on the concrete base of the trestle. Four clutches of young mallards were detected in 1993. Two common clutches included 5 and 6 young per female. We observed only 2 clutches in 1992.

American coots appeared in mid-September, 1993, as they typically do. They fed primarily in Reach 3 early in the season and in all 3 reaches in November. The most coots censused were 101 on 12Nov93. There were 304 coot sightings in 1993 from 12Sep93 to 27Nov93 (10 censusings). There were 303 coot sightings in 1992 from 10Sep92 to 12 Nov92 ( 11 censusings). The number of coots appeared to have stabilized by the end of November.

*Gulls were counted 8 times on the beach during early morning water quality monitoring in 1992, averaging 183 gulls per count, with a range of 61 (90ct92) to 367 (1Sep92). Gulls were counted 13 times on the beach in 1993, averaging 196 gulls, ranging from 141 (12Nov93) to 347 (60ct93) with a standard deviation of 66 .

Five domestic geese used the lagoon in 1991, 3 in 1992 and 4 in 1993. The total domestic ducks (non-mallard) sightings in 1992 was greater than in 1991, and only l more was sited in 1993 than 1992 (40). This indicated a stable and not increasing number. The density in 1993 was similar to 1992. In 1993 there were at most 4 "popcorn ducks" censused at any one time at the lagoon.

Table 5. Fish-eating Bird Sightings at the Lagoon.

| SPECIES | 1992 <br> (Sightings $/ 17$ <br> day visits) | Frequency <br> (Sightings $/ 19$ <br> day visits) |
| :--- | :---: | ---: |
| Black-crowned night heron | 0 | 1 |
| Cormorant | 8 | 0 |
| Great blue heron | 1 | 1 |
| Green-back heron | 0 | 3 |
| Kingfisher | 8 | 5 |
| Merganser | 1 | 14 |
| Pied-Billed Grebe | 18 | 28 |

## Bird-feeding by Humans

In 1993, there was an increase in human bird-feeding over 1992. We observed 6 instances of feeding during observation times comparable to those in 1992, when only 1 instance was observed. In 1993 the bird-feeders were a kitchen worker from the Beach House, a restaurant guest at Sea Bonne, Mrs. Hubback, 2 kids at different times, possibly a brother and sister from the same family residence, and a group of $5-6$ young teen-agers who were passing through. We commonly saw bird seed near Mrs. Hubback's house. There were 3 times the number of pigeons in Reach 2 in 1993 compared to 1992.

## Waterfowl as Biological Control of Aquatic Plants

The effectiveness of ducks that grazed on pondweed and algae was evident in 1993 because very little algae reached the surface. Sacramento suckers also grazed on algae along the lagoon bottom. Although geese were commonly seen feeding on natural vegetation in 1992, no such behavior was observed in 1993.

Recommendations Regarding Management of Bird-Feeding and Domestic, Non-native Waterfowl

1. Maintain enforcement of the no bird-feeding ordinance. Discourage fish-feeding, as well.
2. Request that Restaurant owners allow positioning of devices to the roof tops adjacent to the lagoon to discourage roosting of gulls. Artificial owls that rotate on poles may be more effective than stationary ones.
3. Maintain the appearance and presence of no bird-feeding signs around the lagoon.

## FISH CENSUSING

## Steelhead Plantings in Soquel Creek

In 1993, 12,224 steelhead smolts were planted in Soquel Creek. On $10 \mathrm{Mar93}$ approximately 4000 smolts were released near the Casalegno store. On 13Mar93 the remainder were released at the end of Cherryvale Lane near a nursery. In 1994, 720 and 450 pounds were planted at 6.4 fish/pound (7488 fish) behind the Grange Hall on 22 and 24 March, 1994, respecitvely (Dave Strieg, pers. comm). They were seen in the estuary shortly thereafter.

## Fish Sampling in Soquel Creek Lagoon

A very rough estimate of juvenile steelhead density in the lagoon in 1992 was probably a few hundred. This should be considered a significant number in terms of the population in the creek, though it was considerably less than the lagoon could support in other years. By comparison, in July, 1989, Jerry Smith had observed 900 juvenile steelhead at the mouth of Noble Gulch. If the lagoon becomes too shallow, the upper lagoon becomes too shallow for steelhead to use. That is another reason to keep the lagoon as deep as possible in the summer.

A mark and recapture effort for steelhead was accomplished in fall, 1993. On 26 September 1993, two seine hauls were made, one under the Stockton Avenue bridge and one just downstream with a 3/8-inch mesh 106-foot seine. Two other seine hauls were made along the margin of Reach 1 with a 30 -foot, $1 / 4$-inch mesh seine. A total of 1144 juvenile steelhead were captured (1110 in one haul) and 1046 steelhead were marked with a partial left pelvic clip. Our accommodations for holding fish during processing were overwhelmed, and unfortunately we lost 98 steelhead (8.6\% mortality). We suspected from feeding activity during the morning monitorings that a sizable population was present, but had no idea that there would be so many fish captured. This was an abnormally high amount of mortality for typical seining activities. Refer to Table 6 for the sample summary with lengthfrequency data for steelhead in 1993. For comparison, the summaries for 1988 and 1992 are included in Tables 7 and 8. Unlike the previous fall, no hatchery-reared steelhead were captured. One California roach, 2 staghorn sculpins, 3 Sacramento suckers and thousands of Threespine stickleback were captured. No tidewater gobies were captured. An adult steelhead was seen in the lagoon near the bridge before sampling.

On 10 October 1993, steelhead were recaptured with 2 more seine hauls from under the bridge and downstream with the 106-foot seine. This time we had a holding pin to put captured fish in until they could be examined for fin clips. We lost fewer steelhead (18 fish equal to $3.9 \%$ of the catch) than the previous sampling. Of the 461 juvenile steelhead captured, 173 were marked recaptures and 288 were unmarked. In an effort to minimize the handling time and mortality of steelhead, little data on other fish species were recorded. We measured a huge
threespine stickleback that totaled 91 mm standard length (photo included in Appendix A). Two large steelhead juveniles measured 186 and 187 mm standard length. A dead adult Sacramento sucker was observed before sampling began. Four additional seine hauls were made with the 30 -foot, fine-meshed seine around the margin of Reach 1. No tidewater gobies were captured. The seine was used to manually skim algae from Reach 1.

The population estimate for juvenile steelhead in Soquel Lagoon was calculated, based on the number of marked and recaptured steelhead. The estimate was 2787 juvenile steelhead, with a standard error of 153 fish. The typical confidence interval for a population estimate is 2 standard errors above and below the estimate. Therefore, the estimate was $2787+/-306$. The estimate was based on the logic that the ratio of the number of marked recaptures divided by the total number captured on 10 October was equal to the ratio of the number of fish marked on 26 September divided by the total population of steelhead in the lagoon. In order for this relationship to be accurate, we must assume that the samples were random, that the survival of marked fish was not lessened by the marking process, that marked fish were equally vulnerable to recapture as unmarked fish, and that marked fish randomly redistributed after first captured. If the original capture of steelhead and partially clipping their fins caused some to die before the next sampling (mark-induced mortality), then the population size was overestimated.

The conditions under which an accurate estimate of population size could be ascertained were not entirely met during our mark and recapture efforts. But we did the best we could. No dead steelhead were observed the day following the first capture and fin-clipping. However, some marked fish probably died due to stress after their release. The loss of fish during seining was certainly indicative of stress. The samples were not random. The beach in Reach 1 was chosen because it offered the best landing for the seine. We are uncertain of the degree of randomness of distribution of marked individuals after their release. The marked fish may have stayed in the vicinity of Reach 1 and the bridge instead of mixing more randomly, thus leading to an underestimation of the population size. This is because the marked individuals may have been more likely of recapture. Despite the limitations of sampling method, we feel the estimate of nearly 2800 steelhead in the lagoon was in the ball park of the actual population size.

Only 2 tidewater gobies were captured in the lower lagoon in fall, 1992. None were detected in Reach 1 in fall, 1993. No sampling was done upstream of the Stockton Avenue bridge in 1993. In contrast, in 1988 hundreds of tidewater gobies were captured in Reach 1 (Table 7 from Appendix A of the 1990 Management Plan). The lengths of 107 were measured. In the summer of 1988, an intensive monitoring of the entire lagoon was done by Dr . Jerry Smith. He found tidewater gobies to be common on 21May88 from approximately 100 meters upstream of the Shadowbrook Restaurant at the fir tree to approximately 300 meters upstream, which was
close to the upper end of the lagoon. On 22Jul88, he saw small ( $20-30 \mathrm{~mm}$ long) gobies from the fir tree upstream approximately 200 meters. This upper lagoon may have been the breeding location for tidewater gobies.

In summer of 1989, Dr. Smith could not visually locate any tidewater gobies in the lagoon. We were scheduled to sample the lagoon in the fall, 1989. However, the Loma Prieta earthquake occurred on 17 October, making transportation between San Jose State University (where the equipment was) and Capitola very difficult. It rained a few days later, and the sandbar was breached by 27 October. The lagoon was not sampled again until fall, 1992.

## Discussion of Results of Fish Sampling

The mark and recapture work in 1993 indicated a significant increase in steelhead densities in Soquel Lagoon over the previous year. This several-fold increase in steelhead numbers may be attributed to two factors. First, with the increased streamflow in winter, spawning access, egg incubation and survival of young-of-the-year and yearling steelhead were all probably greater than previously drier winters and springs. Therefore, there were more steelhead upstream of the lagoon that might choose to use the lagoon as nursery habitat than in previous years. In addition, down-migrating steelhead had access to the lagoon all summer in 1993, while access was blocked the two previous years when the streamchannel went dry in Soquel Village. In 1993, Soquel Lagoon flowed continuously from its headwaters to the lagoon all summer, with a minimum estimated flow of 1 cfs entering the lagoon in September. The two previous years, the stream had gone dry in the vicinity of Soquel Village and downstream to a point between Porter Street and Highway 1. The streamchannel was dry at the East Walnut Street - Main Street intersection from at least 12 August to 30 October in 1992. Flow re-surfaced in those drier years before reaching the lagoon. But late summer in-flows diminished to less than 0.2 cfs.

Though there was the dramatic appearance of Sacramento suckers in the lower lagoon in 1992, their numbers appeared significantly reduced in 1993. California roach and staghorn sculpin were at similarly low densities in 1993 as found in 1992 in the lower lagoon (Reach 1). Staghorn sculpin were more abundant in Reach 3 in 1992, but no sampling was done there in 1993 because of previous difficulties in landing the seine.

It appeared that tidewater goby numbers were severely reduced from 1988 to 1992. However, the only heavily sampled area was downstream of the Stockton Avenue Bridge. Tidewater gobies may have been present upstream of the Shadowbrook Restaurant. This reach has not been surveyed for gobies since 1989. One explanation for their disappearance of severe reduction is that winter flows of 1991 and 1992 washed the population out of the winter estuary. There are no backwater areas in lower soquel

Creek that may serve as refuge for small fish that have very limited swimming ability. Tidewater goby may have colonized Soquel Creek and become established during the drought of the 1987 or 1988 from Corcoran Lagoon approximately 1 mile up the coast. In the mid to late 1970's when Cam Swift was sampling Santa cruz County for tidewater gobies, he found them in lagoons on either side of Soquel Creek, those being Corcoran Lagoon in 1975 and Aptos Creek lagoon in 1977 (a drought year). However, he found none in Soquel Creek Lagoon.

## Recommendations Regarding Fish Management

1. Maximize lagoon depth after July 1 by adding boards to the flume and sealing them with plastic.
2. Do not unplug the flume exit after July 1 until the Begonia Festival.
3. Replace the flume boards immediately after the Begonia Festival if any are removed for the Festival.
4. Maintain the lagoon in fall until streamflow has increased enough to prevent stranding of spawning adult steelhead and osmotic stress in lagoon-inhabiting steelhead. Install a perimeter fence with 2"x4" mesh with 6-foot panels around the flume entrance by October 1 . This will prevent plugging of the flume's screen with aquatic vegetation during the first minor storms of fall.

## LITERATURE CITED

Alley, D.W. 1992. Soquel Creek Lagoon Monitoring Report, 199091. Prepared by D.W. ALLEY \& Associates for the City of Capitola and Coastal Conservancy.

Alley, D.W. 1993. Soquel Creek Lagoon Monitoring Report, 199192. Prepared by D.W. ALLEY \& Associates for the City of Capitola and Coastal Conservancy.

Soquel Creek Lagoon Management and Enhancement Plan. 1990. Prepared by Habitat Restoration Group for the City of Capitola and the Coastal Conservancy.

Table 6. Fish sampling results, 26 September 1993.

SOQUEL CEEEK LAGOON FISH SAMPLING
26 September 1993

|  | Number |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Bteelhead | Caliif. <br> Foach | Sacramento Sucker | Threespine Stickleback | Staghorn Sculpin |
| $\begin{aligned} & \text { Seine } \# 1 \\ & \text { (<Bridge) } \end{aligned}$ | 34 | 1 | 2 | $4000+$ | 2 |
| Seine \#2 (Bridge) | 1110 ! |  | 1 | $2000+$ |  |
| Small |  |  |  |  |  |
| Seines |  |  |  | $2000+$ |  |

No tidewater goby captured in 4 seine hauls (2 with fine mesh seine)

1046 juvenile steelhead marked with partial L pelvic clip
Mortality $=98 \mathrm{fish}$, due to algae in net

Steelhead Standard Lengths

$$
(n=255)
$$

90 - 94 mm **********10
$95-99 \quad * * * * * * * * * * * * * * * * * * * * * 21$
100-104 *****************************30
105-109 **************************28
110-114 $* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 41$
115-119 $* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 43$
120-124 *********************21
125-129 ***********11
130-134 **********10
135-139 *****5
140-144 *********9
145-149 ***********11
150-154 ******6
155-159 ****4
160-164 *
165-169 **
170-174 *
175-179
180-184.
185-189 *

Stickleback Plate Morphs High Plate Fartial Flate Low Plate $47 \quad 23$ 3 $64 \% \quad 32 \%$ 4\%

Table 7. Fish sampling results, 17 November 1988.

## SOQUEL CREEK LAGOON FISH SAMPLING

17 November 1988

Standard Lengths Steelhead

$$
(n=157)
$$

| $75-79 \mathrm{~mm}$ | 1 |
| :--- | :--- |
| $80-84$ |  |
| $85-89$ | 1 |
| $90-94$ | 1 |
| $95-99$ | 1 |
| $100-104$ | XXX |
| $105-109$ | XXXXXXX8 |
| $110-114$ | XXXXXXXXXX12 |
| $115-119$ | XXXXXXX8 |
| $120-124$ | XXXXXXXX11 |
| $125-129$ | XXXXXXXXX11 |
| $130-134$ | XXXXXXXXXXXXXX177 |
| $135-139$ | XXXXXXXXXXXXXXXX20 |
| $140-144$ | XXXXXXXXXXXXXX17 |
| $145-149$ | XXXXXXX8 |
| $150-154$ | XXXX5 |
| $155-159$ | XXXXXXXX |
| $160-164$ | XXXXX6 |
| $165-169$ | XX3 |
| $170-174$ | XX3 |
| $175-179$ | X2 |
| $180-184$ | X2 |
| $185-189$ | X2 |
| $190-194$ |  |
| $195-199$ | 1 |
| $200-204$ |  |
| $205-209$ |  |
|  |  |
| $220-224$ |  |
| $225-229$ | 1 |

Staghorn Sculpin ( $n=69$ )

Starry 'Flounder ( $\mathrm{n}=20$ )

XX3
X2
XXXXXXX8
XXXXXXXXXXXX14 X2
XXXXXX7
XXXXXXXXXXXXXX16 XX3
XXXXXXXXX11 XX3
XX3 XXX4
XXX4 - 1
1 X2
X 2
1

Table 7. Fish sampling results, 17 November 1988.
SOQUEL CREEK LAGOON FISH SAMPLING
17 November 1988

Sampling Summary


Standard Lengths Tidewater Goby ( $\mathrm{n}=107$ )

```
25 - 29 mm *********40
30-34 ********38
35-39 *****26
40-44 3
```

Threespine Stickleback Plate Morphs ( $\mathrm{n}=102$ )

- High Plate ************61 Partial *****29 Low **12

Table 8．Fish sampling results， 24 October 1992.

SOQUEL CREEK LAGOON FISH SAMFLING
24 October 1992
CAPTURE SUMMARY

|  | $--x-$ Steelnead－－－－ |  |  |
| :--- | :---: | :---: | :---: |
| Seine | wild | Hatch． | Fiecap． |
| 1 | 43 | 7 |  |
| 2 | 7 | 2 | 18 |
| 3 | 6 | 3 | 4 |
| 4 | 4 |  |  |

Sac．Staghorn Calif．Stickle－ Sucker Sculpin Foach back $\begin{array}{llll}32 & 1 & \text { a } & 1000+\end{array}$ 4021000 $\begin{array}{rrrr}40 & 1 & 2 & 1000+ \\ 21 & 26 & & 1000+\end{array}$

Standard Lergths

| Steelhead | Sacramento | Staghorn |
| :---: | :---: | :---: |
| （n＝60 wild； | Sucker | Sculpin |
| 12 hatchery） | $(n=112)$ | $(n=30)$ |

（Marked：partial L pect．clip）

| 90－94 mm |  |  | ＊ |
| :---: | :---: | :---: | :---: |
| 95－99 | ＊＊ | ＊＊ | ＊＊＊ |
| 100－104 | ＊＊＊ |  | ＊＊＊＊ |
| 105－109 | ＊＊＊ | ＊＊＊＊ | ＊＊＊＊ |
| 110－114 | ＊＊＊＊ | ＊＊ | ＊米米米ねぇ |
| 115－119 | ＊＊＊＊＊＊＊＊ | ＊＊＊＊ | ＊＊＊＊＊＊ |
| 120－124 | ＊＊＊＊＊ | ＊＊＊＊＊＊＊ | 氷米 |
| 125－129 | ＊＊＊＊ | ＊＊＊＊＊＊＊＊＊＊＊＊＊ | ＊ |
| 130－134 | ＊＊＊＊ | ＊＊＊＊＊＊＊＊＊＊ |  |
| 135－139 | ＊＊＊＊＊ | ＊＊＊＊＊＊＊＊＊ |  |
| 140－144 | ＊＊＊＊ | ＊＊＊＊＊＊＊＊＊＊＊ |  |
| 145－149 | ＊＊＊＊＊＊ | ＊＊＊＊＊＊＊＊＊＊＊＊＊ | ＊＊ |
| 150－154 | ＊＊＊＊＊ | ＊＊＊＊＊＊＊＊＊＊＊ |  |
| 155－159 | ＊＊＊＊ | ＊＊＊＊＊ |  |
| 160－164 | ＊ | ＊＊＊＊ |  |
| 165－169 | ＊ | ＊＊＊＊ |  |
| 170－174 | ＊H | ＊＊＊ |  |
| 175－179 | H | ＊ |  |
| 180－184 | HHH |  |  |
| 185－189 |  |  |  |
| 190－194 |  |  |  |
| 195－199 |  |  |  |
| 200－204 | HH |  |  |
| 205－209 | H |  |  |
| 210－214 | H |  |  |
| 215－219 |  |  |  |
| 220－224 | H |  |  |
| 225－229 |  | ＊ |  |
| 230－234 | H |  |  |
| 255－259 | H |  |  |

California Koach SL：70．90，140， 155
Tidewater Goby SL：33， 37
Threespine Stickleback：HighPlate：77 Fartial：39 Low Flate：24

Fecal Coliform Bacterial Counts
Soquel Creek Lagoon Weekly Samples
At the Flume


| - Collform 1990 | - Collform 1991 |
| :--- | :--- |
| $\rightarrow$ Collform 1992 | - Collform 1993 |

Figure 1. Fecal coliform counts at the Flume, comparing 1990, 1991, 1992 and 1993. (Santa Cruz County Data)

## Fecal Coliform Bacterial Counts

Soquel Creek Lagoon Weekly Samples At the Railroad Trestle



- Collform 1991
* Collform 1992
- Collform 1993

Figure 2. Fecal collform counts at the Rallroad Trestle, comparing 1990 1991, 1992, 1993. (S.C. County Data)

Fecal Collform Bacterlal Counts Noble Gulch Weekly Samples At Tunnel and Bay Street


- Collform 1990
* Collform 1992
+ Collform 1991
$\square$ Collform 1993

Figure 3. Fecal collform counts at Bay St. tunnel on Noble Gulch, comparing 1990, 1991, 1992, 1993. S.C. County Data

Fecal Collform Bacterlal Counts
Soquel Creek Lagoon Weekly Samples
Mouth of Noble Gulch


- Collform 1992 - Collform 1991 * Collform 1993

Figure 4. Fecal Collform count at the Mouth of Noble Gulch, comparing 1992 to 1991. (S.C. County Data)

Fecal Collform Counts
Soquel Creek Weekly Samples At Nob HIII


- Coliform $1992 \quad-$ Coliform 1993

Figure 5. Fecal Collform Counts at Nob HIII, comparing 1992 and 1993.
(S.C. County Data)


## APPENDIX A.

 PHOTOGRAPHS, 1993

East Channel to the Jetty 17May93


Closing off East Chan.17May93


Kelp and Seagrass 17May93


Portals Exposed on Flume 18May


Kelp and Seagrass 19May92


Men at Work 18May93
D.W. ALLEY \& Associates



Flushing Sand out of Flume 18May


Opening the Flume Exit 18May93

Preparing Flume Entrance 18May



Popcorn Ducks Feeding 19May93


Lowered Lagoon Upstream 19May


Boat Operator Satisfied 20May


East Side Contoured 21May


West Side Contoured 21May93


Closing Off Outflow 21May93


The Raking Crew 24May93


Remaining Kelp after Raking 24May



Tidewater Goby Sign 27 May93


Water Bird Sign 27May93



Reach 1 6June93


Mamma Merganser and Young 16July


Flume Entrance 16Jul93


Reach 3 6June93


Harrassing Popcorn Duck 16Jul93


Noble Gulch 16Jul93
D.W. ALLEY \& Associates




Reaches 1 and 2 27Jul93


Algae Forest 27Jul93

Algal Spires Reach 1 27Jul93


Reach 1 9Aug93


Reach 2 9Aug93


Reach 2 9Aug93


Reach 3 West Side 9Aug93


Roosting on Log Rch 3 9Aug93


Roosting on Log Rch 3 19Aug93


Roosting at Base of Trestle 19Aug93


Merganser 19Aug93


Merganser With Fish 19Aug93




Restaurant Cove 19Aug93


Reach 3 19Aug93


Two Young Mergansers-Venetian 23Aug


Reach 2 19Aug93


Reach 3 19Aug93


Flume 23Aug93


Merganser is Hunting 3Sep93

Diving Pied-Billed Grebe 3Sep93



Pied-Billed Grebe 3 Sep93

Reach 2 3Sep93


Reach 3 3Sep93


Begonia Floats Reach 2 12Sep93


Begonia Floats Reach 3 12Sep93


Jurassic Park 12Sep93
Ducks Lying Low in Cover 12Sep93


Reach 1 Before Festival 12Sep93


Rch 1 Before Festival 12Sep93


Feeding the Geese 12Sep93


Dismantling the Floats 12Sep93


Rch 2 After the Festival 12Sep


Rch 3 after Festival 12Sep93


Reach 1 27Sep93


Reach 1 27Sep93


Reach 3 West Side 27Sep93


Reach 2 27Sep93


Noble Gulch 27Sep93



Inflow to the Lagoon @ Nob Hill Estimated 1.0 cfs 60ct93


Heermann's Gulls 60ct93


Pulling in Seine 100ct93


Poor Lagoon Level 60ct93


Reach 1 6Oct93


Searching for steelhead 100ct


Finding the Steelhead $100 c t 93$
Transfer to the Live Car 100ct93


Transfer from the Holding Pen


Looking for Clipped Fin


Very Large Stickleback 100ct93


Seine Back in the Boat looct93


Rch 1 after Algae Skimming looct93


Young Ducks Feeding 200ct93


Rch 2 After First Rain 200ct93
Rch 3 After First Rain 200ct93


2 Channels Under Porter St bridge 200ct Sediment-Porter St 200ct


Sediment Screen-Porter St. 200ct


Channel Under Hwy 1 5Nov93


Notch in Sandbar 2 5Nov93


Reaches 1 and 2 5Nov93



Channel Through Beach 9Dec93


Tide Incoming After Breach 9Dec


Erosion Control Hwy 1 9Dec93


41st Ave Culvert Into Creek 9Dec


Streamflow Below Hwy 1 9Dec93


Retaining Wall Hwy 1 9Dec93


Mudslide, West Bank Soquel Cr., Hwy 1 9Dec93


## APPENDIX B.

FISH AND GAME AGREEMENT REGARDING PROPOSED STREAM OR LAKE ALTERATION
$\qquad$












tTAIS IS A TARE (j) IEAR AGIEEXEXT, TALID FOL THE TIXE PELIODS:


Ki] 11, 1991-Detoder 15, 199;
11if 11, 1934-october 15, 1994
Mij 15, 1995 - October 15, 1395
 tpproval has beet received fron the yitdea for the tea of jour project. It it the operator's resporsibility to costact dPe at (707) 944-5530 (0: the fees for exei year.





6. All seaved shall be resored fion the chanel botor before diniag ocers.


 inimeat.

 reit site.


 presect:ios.
 fesposibility fot eapliance vith apglicabie federal, state, or local lavs of ordiances.

 EDELAL PEEXITS OR OTEEL EXTITOTMETAL IEPOITS AE EEPOILED.
*is agreemeat beromes eficctirs or rien siezed br beth paties.


APPENDIX C.
Santa Cruz County Water Monitoring Data, 1993.

COUNTYWIDE WATER QUALITY MONITORING PROGRAM - SOQUEL CREEK

| STANUM |
| :---: |
| 33 |
| 33 |
| S23 |
| 523 |
| 3 |
| 2 |
| $S 23$ |
| 3 |
| 3 | NOBEL G @ TUNNEL @ BAY NOBEL G @ TUNNEL @ BAY NOBEL G @ TUNNEL @ BAY NOBEL G © TUNNEL @ BAY NOBEL G @ TUNNEL @ BAY NOBEL G © TUNNEL @ BAY NOBEL G @ TUNNEL @ BAY NOBEL G © TUNNEL @ BAY NOBEL G © TUNNEL @ BAY NOBEL G @ TUNNEL @ BAY SOQUEL C @ NOB HILL SOOUEL C @ NOB HILL SOQUEL C @ NOB HILL NOBEL G @ 360 BROOKVALE T. NOBEL G @ 360 BROOKVALE T.

NOBEL G BELOW SWIMMING POOL NOBEL G © PLUM ST NOBEL G @ \#36 PLUM
NOBEL G @ \#36 PLUM
NOBEL G @ TUNNEL @ BAY
LOCATION
SOQUEL C O NOB HILL SOQUEL C @ NOB HILL SOQUEL C @ NOB HILL SOQUEL C O NOB HILL SOQUEL C E NOB HILL SOQUEL C @ NOB HILL SOQUEL C @ NOB HILL SOQUEL C @ NOB HILL SOQUEL C © NOB HILL SOQUEL C @ NOB HILL SOQUEL C © NOB HILL SOQUEL C @ NOB HILL SOQUEL C © NOB HILL SOQUEL C NOB HILL SOQUEL C @ NOB HILL SOQUEL C @ NOB HILL SOQUEL C A NOB HILL SOQUEL C @ NOB HILL SOQUEL C NOB HILL SOQUEL C @ NOB HILL SOQUEL C @ NOB HILL SOQUEL C NOB HILL $7 w^{2}$



| STANUM | LOCATION |
| :---: | :---: |
| 1 | SOQUEL C @ Flume |
| 1 | SOQUEL C @ MOUTH |
| So | SOQUEL C © FLUME |
| r? | SOQUEL C F FLUME |
|  | SOQUEL C ¢ FLUME |
| 50 | SOQUEL C O FLUME |
| S0 | SOQUEL C @ FLUME |
|  | SOQUEL C F Flume |
|  | SOQUEL C G FLUME |
| SO | SOQUEL C © FLUME |
|  | SOQUEL C @ FLUME |
|  | SOQUEL C @ FLUME |
| So | SOQUEL C P FLUME |
| Sn | SOQUEL C @ FLUME |
|  | SOQUEL C @ FLUME |
| su | SOQUEL C © FLUME |
| So | SOQUEL C FlUME |
|  | SOQUEL C @ FLUME |
|  | SOQUEL C F Flume |
| S0 | SOQUEL C @ MOUTH |
| m | SOQUEL C © FLUME |
|  | SOQUEL C © FLUME |
| 50 | SOQUEL C @ FLUME |
| So | SOQUEL C @ FLUME |
|  | SOQUEL C @ FLUME |
|  | SOQUEL C @ FLUME |
| 50 | SOQUEL C @ FLUME |


| DATE | TIME | TEMP-C | FECOLI | NOTES |
| :---: | :---: | :---: | :---: | :---: |
| 13-Sep-93 | 10:57 AM | 19 | 1040 | CLEAR WATER. |
| 20-Sep-93 |  | 18 | 800 | CLEAR WATER, MANY SEAGULLS. |
| 27-Sep-93 | 01:10 PM | 20 | 860 | 30 SEAGULLS, SOME ALGAL GROWTH. |
| 04-0ct-93 | 01:20 PM | 19 | 880 | CLEAR WATER, SOME ALGAL GROWTH, 24 BIRDS |
| 13-0ct-93 | 02:10 PM | 18 | 3300 | CLEAR WATER, 40 SEAGULLS. |
| 18-0ct-93 | 01:25 PM | 17 | 980 | clear water, 40 SEAGULLS. |
| 25-0ct-93 | 11:50 AM | 17 | 540 | CLEAR WATER, MANY SEAGULLS. |
| 01-Nov-93 | 01:10 PM | 17 | 440 | CLEAR WATER, MANY SEAGULLS UPSTREAM. |
| 09-Nov-93 | 12:15 PM | 15 | 560 | CLEAR WATER, 20 SEAGULLS. |
| 15-Nov-93 |  | 12 | 500 | CLEAR WATER, BIRDS. |
| 22-Nov-93 |  | 13 | 220 | CLEAR WATER, MANY SEAGULLS. |
| 30-Nov-93 | 01:15 PM | 12 | 3670 | 25 BIRDS ON BROWNISH WATER, RAIN $11 / 29$. |
| 07-Dec-93 | $12: 25 \mathrm{PM}$ |  | 160 |  |
| 13-Dec-93 |  | 12 | 670 | BROWNISH WATER. |
| 16-Dec-93 | 02:40 PM |  | 400 | BROWNISH WATER. |
| 20-Dec-93 | 01:30 PM | 11 | 220 | CLEAR WATER, MANY SEAGULLS. |
| 03-Jan-94 | 12:45 PM | 11 | 210 | CLEAR, STANDING WATER. |
| 11-Jan-94 | 02:00 PM | 13 | 1816 | CLEAR WATER, MANY SEAGULLS. |
| 24-Jan-94 | 01:30 PM | 13 | 19800 | RAIN 1/24. |
| 27-Jan-94 | 12:25 PM | 11 | 1500 | BROWNISH WATER, RAIN $1 / 26$. |
| 31-Jan-94 |  |  | 1820 | CLEAR WATER, SEAGULLS. |
| 14-Feb-94 |  | 10 | 60 | Clear water, 10 BIRDS. |
| 23-Feb-94 | 11:15 AM | 10 | 400 | GREYISH WATER. |
| 28-Feb-94 |  | 15 | 160 | CLEAR WATER. |
| 07-Mar-94 | 01:20 PM | 16 | 60 | clear water. |
| 14-Mar-94 | 01:25 PM | 21 | 650 | Clear water. |
| 21-Mar-94 | 12:10 PM | 15 |  | CHILDREN, CLEAR WATER. |

## APPENDIX D.

Water Quality Data and General Observations of Birds and Aquatic Vegetation 3 June - 27 November, 1993

## Water Quality Data and General Observations of Birds and Aquatic Vegetation 3 June - 27 November, 1993

3 June 1993. Flume entrance with 2 boards on either side. Remainder of the opening screened with 6"x6" mesh. End ribs of screen removed at water line to make adult fish passage easy. The entrance and exit of the flume were 12 inches deep. Gage height $=1.79$. Fish passage was good. Two steelhead smolts were observed at the mouth of Noble Gulch. Slight planktonic algae bloom throughout the lagoon. No other aquatic vegetation. A gray suspension was exiting Noble Gulch. It looked like cleaning water. Nine piles of dog excrement were present at the trestle park. Seven piles were counted along the path. Ten to 12 dogs were walked by their owners along the path mostly in the morning. The water column was clear to the bottom at all stations, though a slight planktonic algae bloom had begun. Two steelhead smolts seen near the mouth of Noble Gulch. Gray suspension entering the lagoon from Noble Gulch indicated pollution source up the gulch. It looked like wash water.

Station: Flume at 1240 hr , Hazy sunshine. Gage Height= 1.79

| Depth(m) | Temp. ( C) | Salin.(ppt) | Oxygen(ppm) | Cond. <br> (umhos) |
| :--- | :--- | :--- | :---: | :---: |
| surf. | 17.9 | 0.00 | - | 610 |
| 0.25 | 17.9 | 0.00 | - | 610 |
| 0.50 | 17.8 | 0.00 | - | 610 |
| $0.75($ bot) 17.5 | 0.00 | - | 600 |  |

Station: Stockton Avenue Bridge, NW pier/SE pier, 1210 hr . Secchi depth to bottom.

| surf | $17.2 / 18.0$ | $0.0 / 0.0$ | - | $620 / 620$ |
| :--- | ---: | ---: | ---: | :---: |
| 0.25 | $17.1 / 18.0$ | $0.0 / 0.0$ | - | $620 / 620$ |
| 0.50 | $17.1 / 17.8$ | $0.0 / 0.0$ | - | $620 / 620$ |
| 0.75 | $17.0 / 17.5$ | $0.0 / 0.0$ | - | $620 / 610$ |
| 1.00 | $16.9 / 17.3$ | $0.0 / 0.0$ | - | $620 / 610$ |
| 1.25 | $16.9 / 17.2$ | 0.0 .5 .0 | - | - |
| 1.50 | $16.9 / 19.1$ | $0.3 / 7.2$ | - | $1100 / 10500$ |
| 1.75 (bot) $16.9 / 19.8$ | $7.2 / 9.6$ | - | $10500 / 14300$ |  |

Birds in Reach 1: 3 geese. 14 gulls bathing. 21 gulls on restaurant roof. 2 gulls near restaurant in water awaiting handout.

Birds in Reach 2: 10 pigeons on trestle.
Birds in Reach 3: 1 pair of wild mallards.
Conclusion: As was the case the previous year, 7 days after final sandbar closure and installation of the shroud, the lagoon was nearly flushed of salt water except at the deeper holes, such as around the piers of the Stockton Avenue Bridge. This occurred without the help of the shroud. Water quality was excellent for aquatic organisms except around the bridge piers. Conductivity
was typical of a freshwater lagoon. Water quality was good with cool enough water temperature (< 18 C ) and oxygen levels were assumed to be near full saturation except in the holes at the Stockton Avenue pier and near. Water temperature was 2-3 degrees c cooler this year than last, presumably due to the higher streamflow. There was noticeably cooler surface water on the shady side of the bridge, and presumably under the bridge. The cooler water and the cover provided by the bridge probably caused steelhead to congregate under the bridge. Conductivity was somewhat less, presumably for the same reason. There appeared to be a new pollution source this year in Noble Gulch.

17 June 1993. Sunny. Gage height $=1.64$. Again a white/gray suspension was visible in the lagoon coming from Noble Gulch. 4 piles of dog excrement on the path. Slight plankton bloom.

Station: Stockton Avenue Bridge. SE and NW piers, 0930 hr . Planktonic algal bloom visible. Secchi depth to bottom.

|  | SE/NW | SE/NW |  | SE/NW |
| :---: | :---: | :---: | :---: | :---: |
| surf. | 20.5/20.0 | 0.0/0.0 | - | 680/680 |
| 0.25 | 20.5/19.5 | 0.0/0.0 | - | 680/680 |
| 0.50 | 20.0/19.2 | 0.0/0.0 | - | 660/660 |
| 0.75 | 18.5/18.2 | 0.0/0.0 | - | 660/660 |
| 1.00 | 18.2/18.0 | 0.0/0.0 | - | 660/650 |
| 1.25 | 18.1/18.0 | 0.0/0.0 | - | 660/650 |
| 1.50 (bot) | 18.1/18.0 | 0.0/0.0 | - | 660/650 |

Station: Railroad trestle, 1010 hr .

| Depth(m) | Temp. ( C$)$ | Salin. (ppt) | Oxygen(ppm) | Cond. <br> (umhos) |
| :--- | :--- | :--- | :---: | :---: |
| surf. | 18.4 | 0.0 | - | 650 |
| 0.25 | 18.3 | 0.0 | - | 650 |
| 0.50 | 17.7 | 0.0 | - | 630 |
| 0.75 | 17.3 | 0.0 | - | 610 |
| 1.00 (bot)17.1 | 0.0 | - | 600 |  |

Conclusion: Water quality conditions were fair to good for steelhead in the lower lagoon and good above the bridge. The lagoon level was shallow (rating of poor) and needed to be raised for fear that water temperatures would become stressfully high by the end of sunny days. Ed Morrison was notified and more boards were placed in the flume entrance. All of the salt water appeared to have been flushed from the lagoon by this time without the use of the shroud. Visible pollution from Noble Gulch becoming chronic. The algae bloom was not as well-developed as the previous year at this time.

18 June 1993. At 1715 hr it was becoming foggy with the tide coming in. It had been cloudy for the past 3 hours. The flume boards had been installed. The water level was within 0.3 feet of the top of the flume's ceiling. A large notch was present on
the west side of the entrance with dimensions 0.9 feet deep and 0.6 feet wide. There was 0.3 feet of water over the boards on both sides with the notch inundated. Water temperature was 22.3 degrees $C$ from the surface to 0.75 meters at the flume. Depth at the flume exit was 2 feet, allowing excellent fish passage. Gage height was 2.06 which was rated fair and considerably improved over the previous day. Water temperatures were tolerable for steelhead.

29 June 1993. It was clear this morning with a cool air temperature of 50 degrees $F$. Fish passage was good through the flume with entrance depth of more than 1 foot and exit depth of 0.8 feet with the tide out. Gage height was 2.00 . There was a thin algal film on the lagoon bottom and still only a slight planktonic algal bloom. But no tufts of algae or pondweed were present. No algae was on the surface. Algae had begun to grow by 14 June the previous summer with a more shallow lagoon and more ooze on the bottom. The tidewater goby and no bird-feeding signs under the trestle had been scratched with tar from the trestle smeared on the goby sign. No-fishing signs were posted at Hubback landing and Noble Gulch. The County contamination signs were up on the beach. The geese approached me for handouts on the beach. One pile of dog excrement on the path, 2 piles at trestle park. Large cloud of gray suspension, measuring 15 feet in diameter present at Noble Gulch mouth. One young-of-the-year steelhead seen at Hubback landing. In-flow to the lagoon was estimated at 4-5 cfs.

Station: Flume, 0530 hr . Weather clear. Flume entrance not measured. Flume exit $=0.8$ feet. Gage height $=2.0$

| Depth(m) | Temp. ( C) | Salin.(ppt) | Oxygen(ppm) | Cond. <br> (umhos) |
| :--- | :--- | :--- | :--- | :--- |
| surf. | 19.4 | 0.00 | 8.62 | 700 |
| 0.25 | 19.6 | 0.00 | 8.65 | 700 |
| 0.50 | 19.5 | 0.00 | 8.65 | 700 |
| 0.75 | 19.5 | 0.00 | 8.62 | 690 |
| 0.85 (bot) 19.5 | 0.00 | 8.60 | 690 |  |

Station: Stockton Avenue Bridge, east pier, 0550 hr . Secchi depth to bottom.

| Depth(m) | Temp. ( C) | Salin.(ppt) | Oxygen(ppm) | Cond. <br> (umhos) |
| :--- | :--- | :--- | :--- | :--- |
| surf. | 19.5 | 0.00 | 8.00 | 700 |
| 0.25 | 19.6 | 0.00 | 7.95 | 700 |
| 0.50 | 19.6 | 0.00 | 8.05 | 700 |
| 0.75 | 19.6 | 0.00 | 8.05 | 700 |
| 1.00 | 19.7 | 0.00 | 8.03 | 700 |
| 1.25 | 19.5 | 0.00 | 8.05 | 700 |
| 1.50 | 19.5 | 0.00 | 8.05 | 700 |
| 1.60 (bot) 19.6 | 0.00 | 7.75 | 680 |  |

Station: Railroad trestle, 0615 hr .

| surf | 18.0 | 0.00 | 7.79 | 690 |
| :--- | ---: | ---: | :--- | :--- |
| 0.25 | 18.0 | 0.00 | 7.90 | 690 |
| 0.50 | 18.0 | 0.00 | 7.70 | 690 |
| 0.75 | 17.9 | 0.00 | 7.80 | 680 |
| 0.90 (bot) 17.9 | 0.00 | 7.73 | 680 |  |

Station: Mouth of Noble Gulch, 0635 hr .

| surf. | 17.3 | 0.00 | 7.15 | 660 |
| :--- | ---: | ---: | ---: | :--- |
| 0.25 | 17.2 | 0.00 | 7.20 | 660 |
| 0.50 | 17.2 | 0.00 | 7.25 | 660 |
| 0.75 | 17.2 | 0.00 | 7.35 | 650 |
| 1.00 | 17.0 | 0.00 | 7.60 | 620 |
| 1.25 (bot) 17.0 | 0.00 | 7.45 | 620 |  |

Birds on the Beach: 137 gulls. 4 geese near restaurants.
Birds in Reach 1: 3 domestic ducks. 3 wild mallards. 8 gulls bathing.

Birds in Reach 2: 14 pigeons on the trestle. 3 wild mallards. 4 swallows flying overhead.

Birds in Reach 3: 3 swallows feeding on insect emergence. No ducks observed, though they were heard under overhanging willows.

Conclusion: Water quality conditions related to oxygen and temperature were good. I was becoming concerned about the Noble Gulch pollution. A resident walking on the path stated that the new managers of the restaurant on Capitola Avenue were washing their mats off in the gutter. I notified Susan Westman. She said that she had all ready complained to them and refused to eat their any more. The water quality right at the mouth of Noble Gulch was good, it being better than in 1992 because I had raked out the plant material from the hole during sandbar closure. The elevation of the lagoon was fair.

16 July 1993. It was a warm morning with an air temperature of 58.1 degrees $F$ ( 14.5 degrees $C$ ) and overcast. Fish passage was excellent through the flume with a depth of 2.1 feet at the entrance and 1.0 foot at the exit. Gulls were bathing in the flume exit water. The large notch was still in place for adult passage out of the lagoon. Steelhead were hitting the surface in great numbers. An adult female with 3 young mergansers were attempting to capture the steelhead in all 3 reaches. There were 87 hits/minute in reach 1. Filamentous algae was beginning to cover most of the bottom of Reach 1 and less upstream. Piedbilled grebes were also present. Many swallows were feeding. The no fishing sign was gone from the trestle. A small island with pampas grass existed adjacent to the Shadowbrook Restaurant. There had been heavy winds the previous night and the lagoon had many willow leaves. Tom Mader had seen an adult steelhead the previous Sunday (July 10) in the lagoon. A young girl, 8-9 years old was feeding the ducks near the trestle park at l030hr. Frank

Hayford said Noble Gulch was an open streamchannel until 1923 or 1924. Steelhead would use it and turtles were very common along that creek. The boardwalk went beyond Noble Gulch to Gilroy Drive, he said. Approximately 4 cfs was entering the lagoon at Nob Hill.

The Don Caputo Construction Company was modifying the Porter Street and Highway 1 bridges over Soquel Creek. At Porter Street the stream ran through 2, 24-inch culverts. The riparian vegetation was cleared for 30-40 feet up and downstream of the existing bridge on both sides of the creek. Under Highway 1 the entire channel was made into a flat pad where the creek channel was directed through 2, 24-inch culverts for approximately 200 feet. Approximately 100 feet of riparian vegetation was removed downstream of the Highway 1 bridge and 20 feet upstream. They left the large cottonwood tree on the east bank. There had been no reports of unusual turbidity in the lagoon.

Station: Flume, 0545 hr . Weather overcast. Gage height $=1.97$. Air temp. $=14.5 \mathrm{C}$. Depth at flume entrance $=2.1$ feet. Flume exit $=1.0$ foot.

| Depth(m) | Temp. ( $C$ ) | Salin.(ppt) | Oxygen(ppm) | Cond. <br> (umhos) |
| :--- | :--- | :--- | :--- | :---: |
| surf. | 19.3 | 0.00 | 9.1 | 710 |
| 0.25 | 19.3 | 0.00 | 9.2 | 700 |
| 0.50 | 19.4 | 0.00 | 9.1 | 700 |
| 0.75 | 19.4 | 0.00 | 9.05 | 700 |
| $0.85($ bot) 19.4 | 0.00 | 9.05 | 700 |  |

87 steelhead hits/minute by 0600 hr . Mergansers chasing. A piedbilled grebe with a young-of-the-year steelhead in its beak.

Station: Stockton Avenue Bridge, west pier, 0620 hr .

| surf. | 19.6 | 0.00 | 8.65 | 710 |
| :--- | ---: | ---: | ---: | :--- |
| 0.25 | 19.6 | 0.00 | 8.64 | 705 |
| 0.50 | 19.5 | 0.00 | 8.60 | 700 |
| 0.75 | 19.5 | 0.00 | 8.62 | 700 |
| 1.00 | 19.5 | 0.00 | 8.55 | 700 |
| 1.25 | 19.5 | 0.00 | 8.45 | 700 |
| 1.50 | 19.5 | 0.00 | 8.45 | 700 |
| 1.65 (bot) 19.5 | 0.00 | 8.40 | 700 |  |

Reach 1: no algae on surface. $80 \%$ of bottom covered, 1-2 feet thick.

Station: Railroad trestle, 0705 hr .

| surf. | 18.8 | 0.00 | 8.20 | 710 |
| :--- | ---: | ---: | ---: | :--- |
| 0.25 | 18.9 | 0.00 | 8.10 | 710 |
| 0.50 | 18.9 | 0.00 | 8.10 | 710 |
| 0.75 | 18.8 | 0.00 | 8.16 | 710 |
| 1.00 (bot) 18.8 | 0.00 | 7.98 | 710 |  |

Reach 2: no algae on surface. $50 \%$ of bottom covered, 0.2-0.8 feet thick.

Station: Mouth of Noble Gulch, 0755 hr .

| surf. | 17.3 | 0.00 | 7.25 | 660 |
| :--- | :--- | ---: | :--- | :--- |
| 0.25 | 17.3 | 0.00 | 7.20 | 670 |
| 0.50 | 17.3 | 0.00 | 7.16 | 670 |
| 0.75 | 17.1 | 0.00 | 7.16 | 670 |
| 1.00 (bot) 16.5 (near culv) 0.0 | 8.10 | 660 |  |  |
| 1.25 (bot) 18.7 (in hole) | 0.00 | 6.10 | 620 |  |

Reach 3: no surface algae. $20 \%$ of bottom covered, 0.3-0.5 feet thick.

Birds on the Beach: 298 gulls on beach.
Birds in Reach 1: 18 gulls bathing. 3 domestic ducks. 10 swallows, 4 mergansers.

Birds in Reach 2: 1 wild male mallard. 3 immature male mallards (greenish yellow bill). 3 female wild mallards (orange bills). 1 domestic male mallard. 8 pigeons on the trestle. 1 kingfisher.

Birds in Reach 3: 3 young mergansers up from Reach 1. 1 blackcrowned night heron roosting in dogwood across creek. 1 female mallard with 5 young. 1 female mallard with 2 young. 4 geese.

Conclusion: Water temperature good. Oxygen good but not at full saturation. Growth of filamentous algae had developed over the past 2 weeks with most rapid growth in Reach 1. This was presumably because there were more nutrients available there from bird excrement. Construction at the bridge crossings upstream appeared to have no adverse effects on the summer lagoon thus far. Streamflow was still remarkably high into the lagoon.

27 July 1993. Water depth at flume inlet was 2.0 feet. Exit was 1.2 feet. Weather was overcast, misty and breezy. Air temperature a warm 17.1 C . Lagoon gage height $=1.94$ at 0620 hr . Secchi depth to bottom $=1.5$ meters. The City had moved the tidewater goby sign from the trestle area where it had been vandalized. It was moved to the Stockton Avenue park, east side. The Wharf to Wharf race had been on 25 July. Streamflow into the lagoon was still high at 3.5-4 cfs. A boy was seen feeding the ducks near the trestle park at 1830 hr . This was the same location that the girl had been seen feeding them the time before. Could this be the same family doing the feeding?

Station: Flume, 0530 hr , overcast.

| Depth(m) Temp.( C) | Salin.(ppt) | Oxygen(ppm) | Cond. <br> (umhos) |  |
| :--- | :--- | :--- | :--- | :--- |
| surf. | 20.8 | 0.00 | 9.10 | 720 |


| 0.25 | 20.8 | 0.00 | 9.10 | 720 |
| :--- | ---: | ---: | ---: | :--- |
| 0.50 | 20.8 | 0.00 | 9.10 | 710 |
| 0.75 | 20.8 | 0.00 | 9.15 | 710 |
| 0.85 (bot) 20.8 | 0.00 | 9.15 | 710 |  |

Reach 1: $1 \%$ of surface with algae $15 \%$ of surface area with algae near surface. 95\% of bottom with algae 2-4 feet thick.

Station: Stockton Avenue Bridge, east pier, 0600 hr .

| Depth(m) | Temp. ( C) | Salin. (ppt) | Oxygen(ppm) | Cond. <br> (umhos) |
| :--- | :--- | :--- | :--- | :--- |
| surf. | 20.6 | 0.00 | 9.05 | 720 |
| 0.25 | 20.6 | 0.00 | 9.03 | 720 |
| 0.50 | 20.6 | 0.00 | 8.97 | 720 |
| 0.75 | 20.6 | 0.00 | 8.95 | 720 |
| 1.00 | 20.6 | 0.00 | 8.95 | 720 |
| 1.25 | 20.6 | 0.00 | 8.95 | 720 |
| 1.50 | 20.6 | 0.00 | 8.84 | 720 |
| 1.65 | 20.6 | 0.00 | 5.35 | 730 |
| 1.70 (bot) 20.6 | 0.00 | 0.45 | 900 |  |

Station: Railroad trestle, 0630 hr .

| surf | 20.2 | 0.00 | 8.30 | 700 |
| :--- | ---: | ---: | ---: | :--- |
| 0.25 | 20.2 | 0.00 | 8.15 | 705 |
| 0.50 | 20.2 | 0.00 | 8.06 | 705 |
| 0.75 | 20.1 | 0.00 | 7.86 | 705 |
| 0.88 (bot) 20.0 | 0.00 | 7.40 | 680 |  |

Reach 2: $1 \%$ of surface with algae. $15 \%$ of surface with algae near surface. $90 \%$ of bottom with filamentous algae, 2-3 feet thick.

Station: Mouth of Noble Gulch, $0700 \mathrm{hr} / 1850 \mathrm{hr}$

| surf. | $19.0 / 20.8$ | 0.00 | 7.63 | 720 |
| :--- | :--- | ---: | :--- | :--- |
| 0.25 | $19.0 / 20.8$ | 0.00 | 7.63 | 720 |
| 0.50 | $18.9 / 20.8$ | 0.00 | 7.60 | 720 |
| 0.75 | $18.7 / 20.8$ | 0.00 | 7.58 | 720 |
| 1.00 (bot) $18.3 / 20.8$ (culv) 0.0 | 7.60 | 650 |  |  |
| 1.25 (bot) $18.5 / 19.8$ (hole)0.0 | 7.36 | 650 |  |  |

Reach 3: $80 \%$ of the bottom with filamentous algae, 1-2 feet thick. None on surface. At Noble Gulch mouth the algae covered $40 \%$ of the bottom, 1-1.5 feet thick. There was a mat of surface algae across from the Shadowbrook in a 15 by 5-foot area.

Birds on the Beach: 143 gulls.
Birds in Reach 1: 3 domestic ducks. 3 geese appeared at 0615 hr . 1 goose and 12 pigeons on beach near Venetian Court. 12 gulls bathing.

Birds in Reach 2: 1 mallard under overhanging willows. pigeons on trestle.

Birds and fish in Reach 3: 3 wild male mallards in eclipse plumage, 2 female wild mallards, 1 pied-billed grebe, 2 young mergansers. 7 steelhead surface hits/min by willows.

Conclusions: The lagoon was warm in mid-July with a water temperature rating of fair. Oxygen levels were good, but not at full saturation. There had been a dramatic surge in filamentous algae growth in just 2 weeks! Algae was not nearly so abundant the previous year, presumably because pondweed was present. However, in 1993, there was still no pondweed observed. The absence of pondweed competition for nutrients may have allowed algae to grow so quickly. There must have been a high proportion of warm, fogless days. Oxygen levels were about the same as 2 weeks previous, with Noble Gulch having the lowest. However, there was no oxygen problem there. Interestingly, there had been a pocket of anaerobic conditions near the Stockton Avenue bridge pier.

7 August 1993. Bird count in late morning (1120hr).
Reach 1: 8 gulls bathing. 4 pigeons along edge.
Reach 2: 4 mallards plus 1 female mallard with 6 young. 1 piedbilled grebe. 2 pigeons roosting on Stockton Avenue Park bulkhead, west side. 16 pigeons roosting on trestle. 11 mallards roosting at trestle base.

Reach 3: 4 swimming mallards. Some may have been domestic mallards.

9 August 1993. Gage height fair at 1.94. Flume was very passable with entrance depth of 1.8 feet and exit depth at 1.2 feet with the tide out. Air temperature was a cool 12.6 C . Secchi depth to bottom at 1.7 meters. Very clear water. The notch in the flume entrance had been partially covered with plywood at my request to maintain the lagoon level. The gage height was higher than the previous year, but the depths at the stations were about the same. The lagoon had filled in some this year at the margins. Streamflow into the lagoon was about 3.0 cfs. 11 piles of dog excrement at trestle park. 2 piles on the path. Where there had been a family of 4 mergansers earlier, now there was just the adult female. 5 kids feeding ducks just upstream of trestle. Congregation of 15 ducks, 4 geese and 3 gulls. Construction at both bridges upstream looked okay. Silt screens in place at downstream exit of culverts at Porter street.

Station: Flume, 0625 hr . High cirrus clouds. No overcast.

| Depth(m) Temp. ( C) | Salin. (ppt) | Oxygen(ppm) | Cond. <br> (umhos) |  |
| :--- | :--- | :--- | :--- | :--- |
| surf. | 21.9 | 0.00 | 9.78 | 720 |
| 0.25 | 22.0 | 0.00 | 9.80 | 720 |
| 0.50 | 22.0 | 0.00 | 9.75 | 720 |
| 0.75 | 21.8 | 0.00 | 9.80 | 720 |
| 0.85 | 21.8 | 0.00 | 9.75 | 720 |

Reach 1: 5\% of the surface with floating algae. $30 \%$ of the bottom with algae 0.5-1 foot thick. $30 \%$ of bottom with dead algae about 2 inches thick. $40 \%$ of lagoon bottom bare sand.

Station: Stockton Avenue Bridge, 0645 hr .

| Depth(m) Temp. ( C) | Salin.(ppt) | Oxygen(ppm) | Cond. <br> (umhos) |  |
| :--- | :--- | :--- | :--- | :---: |
| surf. | 20.7 | 0.00 | 9.65 | 720 |
| 0.25 | 20.8 | 0.00 | 9.65 | 720 |
| 0.50 | 20.8 | 0.00 | 9.75 | 720 |
| 0.75 | 20.8 | 0.00 | 9.85 | 720 |
| 1.00 | 20.8 | 0.00 | 9.90 | 720 |
| 1.25 | 20.7 | 0.00 | 9.85 | 720 |
| 1.50 | 20.7 | 0.00 | 9.70 | 720 |
| $1.65($ bot 20.6 | 0.00 | 8.25 | 720 |  |

At 0850 hr in the shade of the bridge 80 juvenile steelhead seen. Most were 3-4 inches standard length. Some were 6 inches. 38 steelhead surface hits/min.

Station: Railroad trestle, 0710 hr .

| surf | 20.5 | 0.00 | 9.8 | 710 |
| :--- | ---: | :--- | :--- | :--- |
| 0.25 | 20.5 | 0.00 | 9.82 | 710 |
| 0.50 | 20.5 | 0.00 | 9.85 | 710 |
| 0.75 | 20.5 | 0.00 | 9.90 | 710 |
| 0.92 (bot) 20.5 | 0.00 | 9.75 | 700 |  |

In Reach 2, $30 \%$ of bottom with algae $2-3$ inches thick. $30 \%$ of bottom with dead algae. 15\% of bottom with algal spires 0.5-1 foot high. $15 \%$ of bottom with bare sand. $30 \%$ of surface with floating algae.

Station: Mouth of Noble Gulch, 0730 hr .

| Depth(m) Temp. ( C) | Salin. (ppt) | Oxygen(ppm) | Cond. <br> (umhos) |  |
| :--- | :--- | :--- | :--- | :--- |
| surf. | 18.2 | 0.00 | 8.0 | 680 |
| 0.25 | 18.2 | 0.00 | 7.7 | 670 |
| 0.50 | 18.1 | 0.00 | 7.65 | 660 |
| 0.75 | 18.0 | 0.00 | 7.65 | 660 |
| 0.95 (bot) 18.0 (culv) | 0.00 | 6.10 | 650 |  |
| 1.25 (bot)17.8(hole) | 0.00 | 5.95 |  |  |

Reach 3: 20\% of bottom with algae 0.5 to 1.2 feet thick. $70 \%$ of bottom with algae 2-4 inches thick. 10\% bottom with bare sand. $35 \%$ of surface with floating algae.

Birds on the Beach: 212 gulls. Half the gulls on the beach were Heermann's gulls.

Birds and fish in Reach 1: 120 steelhead surface hits/min. 8 gulls bathing. 7 mallards. 2 domestic ducks (popcorn). 3 geese had swum down from upstream. One female mallard with 6 young. 4 pigeons on beach near Venetian court. A feral cat seen going under restaurants.

Birds in Reach 2: 2 mallards. 1 merganser. 23 pigeons on the trestle.

Birds and fish in Reach 3: 6 wild mallards. 2 domestic mallards. female mallard with 2 young. 4 geese were up here now. 6 steelhead hits/min.

Conclusion: The filamentous algal bloom had crashed. All of the nutrients must have been used up, and the algae died. It was starting to come back, but there was still dead algae on the bottom. Still no pondweed was visible. The oxygen levels were higher than 10 days previous. The lower lagoon (Reach 1) was quite warm in the poor range. However the other two reaches were in the fair to good range as one traveled upstream. Dramatically, water temperature in Reach 3 at Noble Gulch was 4 degrees cooler than at the flume, just about 350 meters apart.

19 August 1993. Bird and algae survey at l050hr.
Reach 1: Young girl feeding birds; 11 mallard types - some domestic and some wild, along with 4 geese. $50 \%$ of bottom covered with filamentous algae 0.5 to 2 feet high. It was thickest in restaurant cove. Still no pondweed in lagoon.

Reach 2: 8 pigeons roosting on bulkhead near Mrs. Hubback's house. 12 mallards roosting on concrete base of trestle.

Reach 3: 3 feeding mergansers. One female mallard and 5 young. $40 \%$ of bottom covered with filamentous algae 0.3-1.0 feet high. None on surface except at mouth of Noble Gulch where it was 1-3 feet high in a $10 \times 25$ foot area.

Flume entrance sealed off on west side as I requested. Gage height fair at 1.96. Graffiti seen on upper trestle for the first time.

23 August 1993. Overcast but not foggy. Flume still very passable with entrance at 1.7 feet deep and exit at 1.0 feet deep. Gage height $=1.97$. Air temperature of 14.8 C .

Station: Flume, 0620 hr .

| Depth(m) | Temp. ( $C$ ) | Salin. (ppt) | Oxygen(ppm) | Cond. <br> (umhos) |
| :--- | :--- | :--- | :--- | :--- |
| surf. | 21.3 |  |  | 720 |
| 0.25 | 21.3 | 0.00 | 9.25 | 720 |
| 0.50 | 21.4 | 0.00 | 8.96 | 720 |
| 0.75 | 21.4 | 0.00 | 9.20 | 720 |
| 0.87 (bot) 21.4 | 0.00 | 9.21 | 730 |  |

In Reach 1, algae near surface for $5 \%$ of area. Too dark to see algae under surface. It was very green but not visible enough to make an estimate. Fog came in at 0730 hr , making it impossible to estimate algae below the surface.

Station: Stockton Avenue Bridge, 0700 hr .

| surf. | 21.2 | 0.00 | 8.40 | 720 |
| :--- | ---: | ---: | ---: | :--- |
| 0.25 | 21.3 | 0.00 | 8.50 | 720 |
| 0.50 | 21.3 | 0.00 | 8.52 | 720 |
| 0.75 | 21.4 | 0.00 | 8.55 | 720 |
| 1.00 | 21.4 | 0.00 | 8.56 | 730 |
| 1.25 | 21.3 | 0.00 | 8.40 | 740 |
| 1.50 | 21.4 | 0.00 | 8.25 | 750 |
| 1.65 (bot) 21.5 | 0.00 | 0.70 | 760 |  |

Station: Railroad Trestle, 0720 hr .

| Depth(m) | Temp. ( C) | Salin. (ppt) | Oxygen(ppm) | Cond. <br> (umhos) |
| :--- | :--- | :--- | :--- | :---: |
| surf | 20.8 | 0.00 | 7.90 | 720 |
| 0.25 | 20.9 | 0.00 | 7.73 | 720 |
| 0.50 | 20.8 | 0.00 | 7.80 | 720 |
| 0.75 | 21.0 | 0.00 | 7.85 | 720 |
| 0.88 (bot) 21.0 | 0.00 | 7.30 | 730 |  |

Reach 2: Lower portion with $50 \%$ of bottom with algae 0.5-1.5 feet thick. Upper portion with $40 \%$ of bottom covered. No surface algae.

Station: Mouth of Noble Gulch, 0730 hr .

| Depth(m) | Temp. ( C) | Salin.(ppt) | Oxygen(ppm) | Cond. <br> (umhos) |
| :--- | :--- | :--- | :--- | :---: |
| surf. | 19.5 | 0.00 | 7.35 | 710 |
| 0.25 | 19.6 | 0.00 | 7.25 | 710 |
| 0.50 | 19.6 | 0.00 | 7.40 | 700 |
| 0.75 | 18.8 | 0.00 | 7.21 | 690 |
| 1.00 (bot) 18.4 (culvert) | 0.00 | 4.55 | 630 |  |
| 1.25 (bot)18.8(in hole) | 0.00 | 5.65 | - |  |

Reach 3: 35\% of bottom covered with filamentous algae 0.2-1 foot thick. However, in mid-channel the algae was 2-3 feet thick. 5\% of the surface with floating algae.

Birds on the Beach: 241 gulls. 4 geese on sand near Venetian Court.

Birds and steelhead in Reach 1: 20 bathing gulls early. 3 domestic popcorn ducks. 1 domestic mallard feeding. 2 piedbilled grebes near restaurants. 235 steelhead hits/min @ 0635hr. 25 hits/min @ 0710hr. Later at 0815hr: 43 gulls bathing, 6 domestic mallards, 7 wild mallards, 3 popcorn ducks, 1 piedbilled grebe, 2 young mergansers (male and female) preening by Venetian Court.

Birds and steelhead in Reach 2: 2 pigeons roosting at stockton Avenue park. 19 roosting pigeons on the trestle. 1 domestic mallard. 16 steelhead hits $/ \mathrm{min} @ 0720 \mathrm{hr}$.

Birds in Reach 3: 3 wild mallards and 1 domestic mallard feeding, 2 young mergansers (mother not present). 3 kingfishers.

Conclusion: Water temperatures were slightly cooler than 2 weeks before, with Reach 2 barely being fair, Reach 2 being fair and Reach 3 being good. Oxygen levels were good but not full saturation. The lagoon elevation had been increased by 0.03 with the flume modification, despite a reduction in streamflow to an estimated 2 cfs. Evidence of large steelhead population in the lagoon this year. Asked Ed Morrison to add boards to east side of flume entrance.

30 August 1993. Additional 4"x4" and 2 "x4" boards had been placed in flume entrance. Lagoon gage height was 2.19 and almost into the good rating of above 2.20.

3 September 1993. Overcast, misty and windy. Warm at 15 C air temperature. Gage height $=2.12$, well into the fair range. Flume still very passable with entrance at 1.6 feet deep and exit at 1.2 feet deep. Streamflow into the lagoon had diminished to 1.5-1.75 cfs, which was still wonderful when you consider that it was trickling in at less than 0.1 cfs in previous years with dry stretches upstream.

Station: Flume, 0620 hr .

| Depth(m) | Temp. ( C) | Salin.(ppt) | Oxygen(ppm) | Cond. <br> (umhos) |
| :--- | :--- | :--- | :--- | :--- |
| surf. | 20.8 |  |  | 720 |
| 0.25 | 20.8 | 0.00 | 7.95 | 720 |
| 0.50 | 21.0 | 0.00 | 7.83 | 720 |
| 0.75 | 21.0 | 0.00 | 7.87 | 720 |
| 0.90 (bot) 21.0 | 0.00 | 7.85 | 720 |  |

In Reach 1 there was no algae on surface. Too dark to see bottom.

Station: Stockton Avenue Bridge, 0636 hr .

| surf. | 20.8 | 0.00 | 7.95 | 720 |
| :--- | ---: | ---: | ---: | :--- |
| 0.25 | 20.8 | 0.00 | 7.95 | 720 |
| 0.50 | 21.0 | 0.00 | 7.95 | 720 |
| 0.75 | 21.0 | 0.00 | 7.96 | 720 |
| 1.00 | 21.0 | 0.00 | 7.95 | 720 |
| 1.25 | 21.0 | 0.00 | 7.85 | 720 |
| 1.50 | 21.0 | 0.00 | 7.80 | 730 |
| 1.75 (bot) 21.0 | 0.00 | 0.35 | 740 |  |

Station: Railroad trestle, 0710 hr .

| surf | 20.8 | 0.00 | 7.26 | 720 |
| :--- | ---: | ---: | ---: | ---: |
| 0.25 | 20.8 | 0.00 | 7.30 | 720 |
| 0.50 | 20.8 | 0.00 | 7.28 | 720 |
| 0.75 | 20.9 | 0.00 | 7.20 | 720 |
| 1.00 (bot) 20.9 | 0.00 | 6.95 | 700 |  |

Reach 2 had no surface algae with $35 \%$ of bottom with algae $0.5-$ 2.5 ft thick. Evidence of some die back.

Station: Mouth of Noble Gulch, 0729 hr .

| surf. | 19.8 | 0.00 | 5.95 | 710 |
| :--- | :--- | :--- | :--- | :--- |
| 0.25 | 19.9 | 0.00 | 5.85 | 710 |
| 0.50 | 20.0 | 0.00 | 5.85 | 710 |
| 0.75 | 20.0 | 0.00 | 6.00 | 700 |
| 1.00 (bot) 19.5 (culvert) | 0.00 | 620 |  |  |
| 1.25 (bot) 19.5 (in hole) | 0.00 | 5.55 | 730 |  |

In Reach $3,40 \%$ of the bottom was algae 0.3 to 2 feet thick. None was on the surface. At the mouth of Noble Gulch, $60 \%$ of the bottom had algae 0.5-2 feet high with no surface algae.

Birds on the Beach: At 0625 hr there were no gulls on the beach, but 50 out in surface. By 0805hr there were 164 gulls.

Birds and steelhead in Reach 1: At 0620 hr , 4 domestic ducks at margin. 4 swallows overhead. Steelhead began hitting surface at 0630 hr and were nearly finished by 0750 hr . 260 hits/min @ 0635 hr . At $0655 \mathrm{hr}, 10$ gulls bathing, 35 preening near margin.

Birds and steelhead in Reach 2: 1 female mallard with 5 large young. One other wild mallard. 200 steelhead hits/min @ 0638hr. 8 pigeons on the trestle.

Birds and steelhead in Reach 3: 1 female mallard with 5 small young. 7 other wild mallards. 1 large merganser (mother?). 2 pied-billed grebes. 1 kingfisher. 3 swallows overhead. 2 green-backed herons flew by. 11 mallards flew down creek in formation.

Conclusions: Water temperature was somewhat cooler than 10 days previously by 0.3-0.5 degrees. Days were shorter, and the lagoon was 0.07 feet shallower. due to drop in streamflow. Oxygen levels were 3 ppm less this year than 1992 at this time of year. Noble Gulch was consistently lower with oxygen than other stations, though it posed no water quality problem yet. The bottom at the culvert was nearly anaerobic, and the hole approached 5 ppm, which would be stressful to steelhead. But elsewhere oxygen levels were above 7 ppm . The other low oxygen spot was at the bridge pier. The generally diminished oxygen levels this year would indicate that more plant growth was going on than when there was pondweed in 1992. Duck production appeared better this year. The evidence of a late clutch was good.

12 September 1993 Day of the Begonia Festival. Arrived there before dawn. Air temperature $=16.5 \mathrm{C}$. The gage height was at the upper end of the fair category, it being 2.18 and as high as any time during the season. The City had not removed boards as was done the previous year prior to the Festival. This was fortunate. The flume was still passable with 2.1 feet of depth at the entrance and 0.4 feet of depth at the exit. A few begonias floated near flume. The tide wa in-coming and flume exit was $2 / 3$ full of sand. No ocean water was making it into the lagoon. A kitchen worker from the Beach House was feeding the geese bread slices. The weather was sunny.

Station: Flume, 0630 hr . Still dark.

| Depth(m) Temp. ( C) | Salin. (ppt) | Oxygen(ppm) | Cond. <br> (umhos) |  |
| :--- | :--- | :--- | :--- | :--- |
| surf. | 19.5 | 0.00 | 9.4 | 700 |
| 0.25 | 19.8 | 0.00 | 9.4 | 700 |
| 0.50 | 19.8 | 0.00 | 9.45 | 700 |
| 0.70 (bot) 20.0 | 0.00 | 9.35 | 700 |  |

In Reach 1, the bottom was covered with $25 \%$ pondweed and associated algae, 1-2.5 feet high. Surface algae covering 10\%.

Station: Stockton Avenue Bridge, 0650 hr . Secchi depth to bottom.

| surf. | 19.8 | 0.00 | 9.0 | 720 |
| :--- | ---: | :--- | :--- | :--- |
| 0.25 | 19.8 | 0.00 | 8.8 | 720 |
| 0.50 | 19.6 | 0.00 | 8.8 | 720 |
| 0.75 | 20.0 | 0.00 | 8.8 | 720 |
| 1.00 | 20.0 | 0.00 | 8.81 | 720 |
| 1.25 | 20.0 | 0.00 | 8.8 | 720 |
| 1.50 | 20.0 | 0.00 | 8.6 | 720 |
| 1.70 (bot) 20.1 | 0.00 | 5.5 | 720 |  |

Station: Railroad trestle, 0720 hr .

| Depth(m) | Temp. ( C) | Salin.(ppt) | Oxygen(ppm) | Cond. <br> (umhos) |
| :--- | :--- | :--- | :--- | :---: |
| surf. | 18.8 | 0.00 | 7.35 | 700 |
| 0.25 | 19.0 | 0.00 | 7.30 | 700 |
| 0.50 | 19.2 | 0.00 | 7.20 | 700 |
| 0.75 | 19.3 | 0.00 | 7.15 | 700 |
| 1.00 (bot) 19.7 | 0.00 | 6.05 | 720 |  |

In Reach 2, 50\% of the bottom was pondweed with algae growing on it, .5 to 3 feet high and averaging 1.5 feet. No surface algae.

Station: Mouth of Noble Gulch, 0740 hr .

| surf | 18.5 | 0.00 | 5.95 | 680 |
| :--- | :--- | :--- | :--- | :--- |
| 0.25 | 18.5 | 0.00 | 5.80 | 680 |
| 0.50 | 18.6 | 0.00 | 5.86 | 680 |
| 0.75 | 18.6 | 0.00 | 5.65 | 680 |
| 0.95 (bot) 19.7 (culvert) | 0.00 | 4.45 | 680 |  |

In Reach 3, pondweed and associated algae covered $30 \%$ of the bottom, 0.5-2 feet high and averaging 1.5 feet. At Noble gulch there was algae only, covering $40 \%$ of the bottom, 0.5-2 feet thick and averaging 1.5 feet.
Birds on the Beach: None at dark. 123 gulls by 0645 hr .
Birds and fish in Reach 1: 8 bathing gulls. 8 wild mallards feeding. One female mallard with 5 small young. 3 popcorn ducks and 4 geese on beach margin. 280 steelhead surface hits/min at 0650 hr . 2 coots feeding on algae. 1 domestic mallard present at 0840hr. No ducks in Reach 1 at 0930hr.

Birds and fish in Reach 2: 1 pied-billed grebe. 30 pigeons and 1 gull on the trestle. 105 steelhead surface hits/min at 0715 hr .

Birds in Reach 3: 1 coot diving. 2 pied-billed grebes. 5 steelhead hits/min at 0738 hr . The female mallard and 5 young have moved upstream to a rock by the Shadowbrook by 0840 hr . The domestic ducks are feeding nearby by 0940 hr . 1 gull roosting on a rock by 0940 hr .

Station: Flume, 1640 hr . 12 September after the Festival. Gage height $=2.09$.

| Depth(m) Temp. ( $C)$ | Salin. (ppt) | Oxygen(ppm) | Cond. <br> (umhos) |  |
| :--- | :--- | :--- | :--- | :---: |
|  |  |  |  |  |
| surf. | 22.0 | - | - | 730 |
| 0.25 | 22.0 | - | - | 730 |
| 0.50 | 22.0 | - | - | 730 |
| 0.75 | 22.0 | - | - | 730 |
| 1.00 (bot)21.8 | - | - | 730 |  |

Station: Stockton Avenue Bridge, 1720 hr . Secchi depth $=1.1$ meter at 1630 hr .

| surf. | 22.0 | - | - | 750 |
| :--- | :--- | :--- | :--- | :--- |
| 0.25 | 22.0 | - | - | 740 |
| 0.50 | 22.0 | - | - | 740 |
| 0.75 | 21.8 | - | - | 740 |
| 1.00 | 21.9 | - | - | 730 |
| 1.25 | 21.5 | - | - | 730 |
| 1.50 | 21.4 | - | - | 730 |

Station: Railroad trestle, 1650 hr .

| surf. | 20.5 | - | - | 720 |
| :--- | :--- | :--- | :--- | :--- |
| 0.25 | 20.5 | - | - | 720 |
| 0.50 | 20.5 | - | - | 720 |
| 0.75 | 20.5 | - | - | 720 |
| 1.00 (bot) 20.5 | - | - | 720 |  |

Station: Mouth of Noble Gulch, 1700 hr .

| surf. | 21.5 | - | - | 730 |
| :--- | :--- | :--- | :--- | :--- |
| 0.25 | 21.5 | - | 730 |  |
| 0.50 | 21.5 | - | 720 |  |
| 0.75 | 21.5 | - | 720 |  |
| 1.00 (bot) 19.7 (culvert) | - | - | 670 |  |
| 1.25 (bot) 19.8 (in hole) | - | - | 680 |  |

Conclusions: Water temperature and oxygen levels were similar to 9 days previously. As then, oxygen decreased progressively upstream and approached stressful levels at Noble Gulch. We have no explanation for this lower oxygen level at the Gulch. Compared to the previous year, water temperature was about 1 degree cooler throughout the day in 1993, with the lagoon level 0.5 feet deeper. Oxygen levels were less in 1993. We saw our first coots and pondweed. The pondweed had grown very quickly. There was not nearly the amount of aquatic vegetation as the previous year at this time. Yet the oxygen levels were considerably lower in the mornings. The activities along the lagoon appeared to have attracted a seasonal high of pigeons to the trestle. The waterfowl appeared to have moved upstream as the morning progressed. The geese had even moved upstream to Reach 3 to perch on a log out in the channel. A sound system had been set up on the beach.

After the Begonia Festival in late afternoon, the lagoon was somewhat turbid and conductivity was slightly increased due to the suspended sediments stirred up by the procession of floats. However, water quality was good. Conductivity had been lower all summer compared to the previous year. Water temperatures were warm near the end of the day, but not stressful for steelhead.

13 September 1993 Weather overcast, misty and windy on the day after the Begonia Festival. Secchi depth to bottom at 1.5 m . at

0715 hr . Flow at Nob Hill entering the lagoon was approximately 1.0 cfs .

Station: Stockton Avenue Bridge, 0650 hr . Gage ht. $=2.13$

| Depth(m) Temp. ( C) | Salin.(ppt) | Oxygen(ppm) | Cond. <br> (umhos) |  |
| :--- | :--- | :---: | :--- | :---: |
| surf. | 19.5 | 0.0 | 8.30 | 710 |
| 0.25 | 19.8 | 0.0 | 8.45 | 710 |
| 0.50 | 19.8 | 0.0 | 8.35 | 710 |
| 0.75 | 19.8 | 0.0 | 8.10 | 710 |
| 1.00 | 19.9 | 0.0 | 8.15 | 710 |
| 1.25 | 20.0 | 0.0 | 8.02 | 710 |
| 1.50 | 20.0 | 0.0 | 7.80 | 710 |
| $1.70($ bot) 20.0 | 0.0 | 1.10 | 710 |  |

In Reach 1, 5\% of the surface had floating algae.
Station: Railroad trestle, 0720 hr .

| surf. | 19.2 | 0.0 | 7.2 | 700 |
| :--- | :--- | :--- | :--- | :--- |
| 0.25 | 19.2 | 0.0 | 7.18 | 700 |
| 0.50 | 19.5 | 0.0 | 7.10 | 700 |
| 0.75 | 19.5 | 0.0 | 7.10 | 700 |
| 1.00 (bot) 19.6 | 0.0 | 3.82 | 700 |  |

In Reach 2, 1\% of the surface had floating algae. Reach 3 had none.

Birds on the Beach: Not counted.
Birds and fish in Reach 1: 40 bathing gulls. 2 wild mallards feeding. One female mallard with 5 small young. 3 popcorn ducks. Only 2 steelhead hits/min.

Birds and fish in Reach 2: 4 geese. 2 steelhead hits/min.
Birds in Reach 3: 1 coot. 2 wild mallards and 2 domestic mallards. Only 2 steelhead hits/min.

Conclusions: The conductivity and turbidity had declined to prefestival levels. Water temperature was fair. Oxygen levels were good in the upper water column, but stressfully low for steelhead near the lagoon bottom of the lower lagoon. This indicated that considerable decomposition of dead plant material was probably going on at the bottom. Steelhead can tolerate the oxygen levels present, but may have moved upstream this morning. We have observed steelhead at oxygen levels below $3 \mathrm{mg} / \mathrm{L}$ in early morning for weeks in other lagoons. The number of steelhead feeding on the surface was considerably reduced from the number yesterday before the Festival. This indicated that either their patterns had been temporarily disturbed or the insects that may have been emerging that morning had been disturbed during the Festival. The mother mallard and her young had survived the Festival without incident.

14 September 1992 Weather cool and misty throughout the day. Gage height $=2.25$ at 1845 hr . After the Begonia Festival cleanup. Very few begonias left in the lagoon. Those were only at the beach end of the lagoon. No begonias were left along the margins of the lagoon. They did a good job of cleaning up. Nels Westman had found and removed 9 patches of water hyacinths from the upper lagoon. The largest was $3 \times 3$ feet. They are sold at a store in Nob Hill shopping center adjacent to the creek.

20 September 1993 Light fog soon to burn off. Gage height $=$ 2.17. Air temperature cooler than earlier in the summer at 12.6 C at 0706 hr . This is a week after the Begonia Begonia Festival. The flume is still very passable to fish with the entrance depth at 1.7 feet and the exit at 0.9 feet. Willow leaves on riparian trees, west side, senescing (turning yellow). A man living in a rental adjacent Reach 3 stated that the steelhead were feeding heavily the night before.

Station: Flume, 0700 hr .

| Depth(m) | Temp. ( C$)$ | Salin. (ppt) | Oxygen(ppm) | Cond. <br> (umhos) |
| :--- | :--- | :---: | :---: | :---: |
| surf. | 17.8 | 0.0 | 9.1 | 670 |
| 0.25 | 17.8 | 0.0 | 9.1 | 670 |
| 0.50 | 17.8 | 0.0 | 9.04 | 670 |
| 0.75 | 17.8 | 0.0 | 9.15 | 670 |
| 1.00 (bot) 17.7 | 0.0 | 9.00 | 680 |  |

In Reach 1, 1\% of the surface with floating algae. $60 \%$ of bottom with algae 0.2-0.6 feet thick. $5 \%$ of bottom with algae and pondweed in clumps 1-2.5 feet high.

Station: Stockton Avenue Bridge, 0718 hr .

| surf. | 17.9 | 0.0 | 8.9 | 680 |
| :--- | :--- | :--- | :--- | :--- |
| 0.25 | 18.0 | 0.0 | 8.8 | 680 |
| 0.50 | 18.2 | 0.0 | 8.85 | 680 |
| 0.75 | 18.2 | 0.0 | 8.8 | 680 |
| 1.00 | 18.2 | 0.0 | 8.8 | 680 |
| 1.25 | 18.2 | 0.0 | 8.78 | 680 |
| 1.50 | 18.2 | 0.0 | 8.63 | 680 |
| 1.70 (bot) 18.3 | 0.0 | 5.30 | 690 |  |

Station: Railroad trestle, 0743 hr .

| surf | 17.8 | 0.0 | 8.2 | 670 |
| :--- | ---: | :--- | :--- | :--- |
| 0.25 | 17.8 | 0.0 | 8.1 | 670 |
| 0.50 | 17.8 | 0.0 | 8.1 | 670 |
| 0.75 | 17.9 | 0.0 | 8.05 | 670 |
| 1.00 (bot) 17.9 | 0.0 | 5.70 | 680 |  |

In Reach 2, 60\% of the bottom covered with algae 0.2-1 foot thick. $5 \%$ of the bottom with algae and pondweed 1-3 feet high. No surface algae.

Station: Mouth of Noble Gulch, 0805 hr .

| Depth(m) | Temp.( C) | Salin.(ppt) | Oxygen(ppm) | Cond. <br> (umhos) |
| :--- | :---: | :---: | :---: | :---: |
| surf. | 16.8 | 0.0 | 6.65 | 650 |
| 0.25 | 17.0 | 0.0 | 6.52 | 650 |
| 0.50 | 17.0 | 0.0 | 6.50 | 650 |
| 0.75 | 17.0 | 0.0 | 6.55 | 620 |
| 1.00 (bot) 17.9 | 0.0 | 5.70 | 680 |  |

In Reach 3, the bottom was $50 \%$ covered with algae 0.2-0.5 feet thick. $10 \%$ of the bottom with algae and pondweed $1-3$ feet high. No algae on the surface. Aquatic vegetation at Noble Gulch was similar to the rest of the lagoon with $60 \%$ of the bottom with algae 0.2-0.5 feet thick and none on the surface.

Birds on the Beach: 164 gulls.
Birds and fish in Reach 1: 19 bathing gulls. 3 popcorn ducks and 2 domestic mallards feeding on algae. 1 wild male mallard. 4 geese on beach by restaurants. Later 2 coots and one small female merganser. Where is her brother? 3 steelhead hits $/ \mathrm{min}$ at 0800 hr . Later, geese seen feeding on aquatic algae until a young couple with a 3-4 year old daughter came from the walkway. The geese chased them across the beach. The parents shielded their child from the geese.

Birds and fish in Reach 2: 2 pied-billed grebe. 16 pigeons on the trestle. 1 coot. 1 steelhead surface hits/min at 0758 hr .

Birds in Reach 3: 2 more pied-billed grebes, one with a stickleback. 1 coot (same as the one in Reach 2.26 mallards flying downstream, overhead.

Conclusions: The lagoon was seasonally cooling off and was 1-2 degrees $C$ cooler than the previous year at this time. This was presumably because the lagoon was more than 0.5 feet deeper this year. Oxygen levels were good except at Noble Gulch where they were fair for the most part. Reaches 2 and 3 had lagoon bottom oxygen levels approaching stressful levels, but not being a problem. The wild mallards were scarce this time of year at the lagoon. No evidence of sediment input from activities at the bridges upstream.

27 September 1993. Bird and aquatic vegetation monitoring. Gage Height $=1.78$. 3 previous days of hot weather.

Reach 1: $10 \%$ of the surface with algae. $40 \%$ of the bottom with pondweed and algae 1-3 feet high. $20 \%$ of the bottom with algae alone, 1-3 feet spires. At $1245 \mathrm{hr}, 39$ gulls bathing, 5 gulls over by restaurants awaiting handouts. 4 geese on beach.

Reach 2: $2 \%$ of the surface with algae. $40 \%$ of bottom with
pondweed and algae 0.5-3 feet high. $35 \%$ of the bottom with algae alone, 0.5-2 feet high. 4 coots, 2 pied-billed grebes, 1 female mallard and 4 young. Mallards and coots feeding on vegetation. 4 domestic ducks roosting at trestle's concrete abutment - west side. 1 gull roosting at west park near bridge.

Reach 3: 1\% of the surface with algae. 15\% of the bottom with algae and pondweed 0.5-3 feet high. $60 \%$ of bottom with algae 0.5-2 feet thick. 2 other pied-billed grebes.

6 October 1993. Bird and aquatic vegetation monitoring. The City took out 2 boards on 5 October and said they would be reinstalled on 7 October at my request. Gage Height $=1.23$. Willows leaf senescence well under way. Estimated 1 cfs entering lagoon. Estimated 0.75 cfs flowing at Walnut and Main Street. Survey done $1005-1115 \mathrm{hr}$.

Beach: 347 gulls. Two species at least. 10 pigeons.
Reach 1: Surface algae on $10 \%$ of surface. Bottom with $70 \%$ algae and pondweed 1-3 feet high. 1 mallard feeding on algae. 3 popcorn ducks and 4 geese on beach near Venetian Courts.

Reach 2: $1 \%$ of surface with algae. $40 \%$ of bottom with algae and pondweed 0.5-2 feet high. 8 pigeons on trestle over lagoon. 17 other pigeons on road bed further east on trestle. 6 pigeons near Mrs. Hubback's house at park. 2 pied-billed grebes, 1 coot.

Reach 3: $3 \%$ of the surface with algae. $40 \%$ of bottom with algae and pondweed 0.5-3 feet high. 12 coots, 2 other pied-billed grebes.

8 October 1993 Both boards had been re-installed in flume, but lagoon gage height only 1.19.

14 October 1993. Light rain last night. One board had been removed. Gage Height $=1.94$ at 1100 hr .

16 October 1993. 0945hr. Estimated 3.5 cfs entering lagoon. 2 boards out on west and 1 board out on east side of flume entrance. Too turbid to see vegetation. Gage height $=1.85$.

Reach 1: 15 gulls bathing.
Reach 2: 10 mallards (some domestic), 4 geese, 2 gulls, 6 brown mallards (probably mother and 5 young). Birds congregating around 3 women sitting on west park bench near bridge, expecting to be fed.

Reach 3: 18 coots, 1 pied-billed grebe, 2 domestic mallards.

20 October 1993. Bird and aquatic vegetation monitoring. Survey at 1030 hr . Gage Height $=1.80$. Estimated 1.3 cfs entering the
lagoon. Porter street culverts removed. 2 gravel trenches remain. Gravel 1-2 inches in diameter. Gravel extended up bank 3 feet on north and none on south bank. Juke nettings on slopes with hay-bail walls. Some sediment deposition evident next to stream. Street culvert outlet on stream bank with some erosion protection. Lagoon slightly turbid.

Beach: 180 gulls.
Reach 1: $1 \%$ of surface with algae. $40 \%$ of bottom with algae alone, .2-1 foot thick. 5\% of bottom with algae and pondweed. 17 gulls bathing, 4 young wild mallards. 4 geese on margin near Venetian.

Reach 2: 65\% of bottom with algae alone, .2-1 foot thick, averaging 0.5 feet. $10 \%$ algae and pondweed $1-1.5$ feet high. Surface algae covering less than 1\% of area. 14 pigeons on trestle, 5 coots, 1 domestic mallard.

Reach 3: 40\% of bottom algae alone, .2-1 foot thick, averaging 0.5 feet. $5 \%$ of bottom with pondweed and algae, 1-1.5 feet high. 15 coots, 1 pied-billed grebe, 4 mallards (some domestic).

5 November 1993. 0830hr. Bird and vegetation survey.
Beach: 200+ gulls.
Reach 1: 65\% of the bottom with green algae tufts 0.3-2.5 feet in diameter. Algae and pondweed making up 15\% of bottom 2-3 feet high. No surface algae. 1 pied-billed grebe, 12 coots, 6 bathing gulls, 61 pigeons and 4 geese on beach near Venetian court.

Reach 2: Green algae tufts covering 20\% of bottom, .25-1 foot diameter. Pondweed and algae making up 15\% of bottom 1-2 feet high. None on surface. 12 coots, 2 domestic mallards.

Reach 3: Very green algae tufts covering 15\% of bottom, 0.5-1.5 feet in diameter. $1 \%$ of bottom with grazed pondweed and algae, 1-1.5 feet tall. 2 pied-billed grebes, 1 kingfisher, 36 coots, 1 gull roosting on log. Saw aggression between a black-crowned night heron and a green-backed heron over lagoon across from Maders. Both birds retreated to separate trees, west side.

10 November 1993. Began raining and continued overnight. At 1400hr Ed Morrison took 1 6-inch board out on one side and 3 4inch boards out on the other side. At 1730 hr , Ed removed another 6-inch board when water level was 3-4 inches above flume. He saw 3 small salmonids, approximately 15 in length near the flume exit. None tried to go into the flume.

Between 0100 and 0230 hr 11Nov93, lagoon level went 14 inches above the flume. Ed cleared debris out from in front of flume at 0230 hr . At 0630 hr , lagoon level 2 inches below piling bolt (1820 inches above flume). Ed cleared debris again, including a log
jammed in one side. By 1030 hr , lagoon had dropped significantly to 1 foot below top of flume. Good work in saving the sandbar and lagoon!

12 November 1993. 0900 hr . Bird count. Water too turbid to see vegetation. Boards had been replaced earlier this morning by the City when the gage height was 1.87 so that 1 board was out on either side of flume entrance. Scum line visible 2 inches below piling bolt. High tide previous night bud did not reach lagoon. It came $1 / 2$ way up beach through notch constructed in sandbar. Estimated 3.5 cfs passing Porter street. No erosion visible there from small storm. Estimated 4 cfs at Highway 1 bridge. All work had stopped there. A backhoe was stuck in the mud on west side at Wharf Road elevation. Water had come down road and past drain to run down bare bank with erosion evident. Hay-bail dam at downstream end of construction area in stream had been blown out. The channel was now 25 feet wide. Erosion gullies evident from northeast road coming down bank to go under bridge. At Nob Hill there was an estimated 5 cfs. Construction forms were in backwater there. Alders had been cut on west bank. There size was 4-5 inches in diameter. Water was clear. Stormflow had been an estimated 40-50 cfs.

Beach: 141 gulls.
Reach 1: 20 gulls bathing, 14 coots, 1 pied-billed grebe.
Reach 2: 18 pigeons on trestle. 81 coots, 2 domestic mallards, 4 geese. Then Mrs. Hubback began feeding the birds at 0910hr. Congregation included 4 geese, 8 gulls, 6 wild mallards (probably the mother and clutch) and 10 pigeons.

Reach 3: 6 coots, 3 popcorn ducks, 6 mallards (2 domestic).

27 November 1993. Gage height $=1.89$. Bird count. 2 boys fishing off bridge. One man feeding geese, etc., from Sea Bonne Restaurant.

Reach 1: 52 coots, 1 pied-billed grebes, 5 mallards, 4 geese, 3 popcorn ducks, 1 dead gull, 13 live gulls.

Reach 2: 14 coots, 2 pied-billed grebes, 2 mallards.
Reach 3: 15 mallards, 14 coots.
28 November 1993. Raining hard at my house, so I headed toward lagoon. at 1805hr, lagoon level 2 inches above flume. Increased 2 inch in $1 / 2$ hour. I left message with police department to notify Ed Morrison. Scattered showers on way home. Ed kept an eye on the lagoon.

9 December 1993. Lagoon was breached at about 0700hr with shovels. Notch in sandbar not present due to equipment breakdown.

