

Volume 2: Appendices

General Plan Update Draft EIR

for the City of Capitola

State Clearinghouse No. 2013072002

December 19, 2013

The Planning Center | DC&E

in collaboration with:

RBF Consulting

APPENDIX A

NOTICE OF PREPARATION

.....

APPENDIX A1: Notice of Preparation

.....

Notice of Preparation (NOP)

Date: July 1, 2013

To: Responsible Agencies and Other

Interested Parties

State Clearinghouse P.O. Box 3044

Sacramento, CA 95812-3044

From: City of Capitola

Community Development Department

420 Capitola Avenue Capitola, California 95010

The City of Capitola will be the Lead Agency and will prepare a programmatic Environmental Impact Report (EIR) for the Capitola General Plan Update project (the Project). The Project, its location, and potential environmental effects are described below. Pursuant to the California Environmental Quality Act (CEQA) Section 15063, the City has determined that an EIR is required for the Project.

A General Plan is a "project" as defined by the California Environmental Quality Act (CEQA) and, therefore, subject to an assessment of potential environmental impacts. The General Plan itself is what is reviewed and not any specific development or capital projects that may come about as a result of the General Plan. As such, CEQA defines the level of environmental review differently than it does for a specific development project. At the "program" level of review, which is what the General Plan falls under, the potential environmental impacts are assessed according to what the General Plan may call for through its various policy and program recommendations.

Members of the public and public agencies are invited to provide comments in writing as to the scope and content of the EIR. The City needs to know the views of Responsible and Trustee Agencies as to the scope and content of the environmental information that is germane to each agency's statutory responsibilities in connection with the proposed Project. Responsible Agencies will need to use the EIR prepared by the City when considering their permit or other approval for the Project.

Due to the time limits mandated by State law, responses must be sent at the earliest possible date, but no later than the close of the NOP review period, which runs from July 1, 2013 through August 1, 2013. Please send written responses to Richard Grunow, Community Development Director at the address shown below. Public agencies providing comments are requested to include a contact person for the agency.

1. Project Name: Capitola General Plan Update

2. Project Location, Existing Land Uses, and Surrounding Uses:

Capitola is a coastal community located along the Monterey Bay. As shown in Figure 1, the City of Capitola is located in Santa Cruz County, several miles south of the City of Santa Cruz. With a land area of 1.7 square miles, Capitola is home to a population of around 10,000 residents.

Existing land use in Capitola include residential, commercial, industrial, and mixed-use districts as described below:

- Residential neighborhoods include Depot Hill, Riverview Terrace, Cliffwood Heights, Jewel Box, and Upper Village. These neighborhoods contain a mixture of single-family homes, multi-family dwellings, and mobile home parks.
- ♦ Commercial and industrial districts include 41st Avenue/Capitola Mall, Bay Avenue, and Kennedy Drive. 41st Avenue and Capitola Mall constitute the primary regional retail destination in Santa Cruz County.
- ♦ Mixed-use districts include Capitola Village and Capitola Avenue. Capitola Village is the "heart" of Capitola with a mixture of visitor-serving commercial establishments, public amenities, and residential uses, including transient residential uses such as vacation rentals and hotels and motels.

Capitola is surrounded by a variety of land uses, including residential uses in unincorporated Santa Cruz County to the south and west, commercial and residential uses in to the north, and park and open space uses in the New Brighton State Park to the east.

3. Lead Agency Contact:

Richard Grunow
Community Development Director
City of Capitola
420 Capitola Avenue
Capitola, CA 95010
Tel. (831) 475-7300
Email: rgrunow@ci.capitola.ca.us

4. Project Sponsor:

City of Capitola 420 Capitola Avenue Capitola, CA 95010

5. Project Description:

The General Plan Update for the City of Capitola includes both an update of the 1989 General Plan and the preparation of a Climate Action Plan. The General Plan and the Climate Action Plan seek to advance the following key objectives:

- Preserving and enhancing Capitola's unique community identity.
- Enhancing opportunities for residents to meet and gather and engage in civic life.
- Protecting and enhancing residential neighborhoods.
- Protecting natural resources and promoting environmental sustainability.
- ♦ Strengthening the local economy.
- Promoting fiscally-responding municipal decision making.
- Providing a balanced transportation system for all modes of travel.
- Protecting the health and safety of the community.

The General Plan Update will include updates to the following State-mandated elements: Land Use, Open Space, Conservation, Safety, Noise, and Mobility. The State-mandated Housing Element will remain a separate, standalone document. An Economic Development Element will also be included as an optional element.

The General Plan Update will result in an updated policy framework and consolidated land use designations intended to guide future growth in Capitola.

6. Probable Environmental Effects of the Project:

The EIR will evaluate potentially significant environmental impacts associated with the adoption and implementation of the General Plan Update and Climate Action Plan. Consistent with the State CEQA Guidelines (Appendix G), the following environmental resource categories will be analyzed in relation to the Project:

- ♦ Aesthetics
- ♦ Agriculture and Forestry Resources
- ♦ Air Quality and GHG Emissions
- ♦ Biological Resources
- ♦ Cultural Resources
- ♦ Geology / Soils
- ♦ Hazards and Hazardous Materials
- ♦ Hydrology and Water Quality
- ♦ Land Use / Planning
- ♦ Mineral Resources
- ♦ Noise
- ◆ Population and Housing
- ♦ Public Services and Recreation
- ♦ Transportation and Traffic
- ♦ Utilities and Service Systems

All of the resource categories listed above will be considered in the EIR; however, given the location of Capitola in an urbanized part of Santa Cruz County, it is anticipated that resource categories, such as Agriculture and Forestry Resources and Mineral Resources, for which it can be clearly demonstrated that no significant impacts would result from Project implementation will be addressed briefly and "scoped out."

7. Scoping Meeting

The City of Capitola will conduct one joint public and agency scoping meeting on the Project in accordance with CEQA Section 21083.9. The scoping meeting is an opportunity for public agencies and interested members of the general public to learn more about the EIR for the General Plan and comment on the scope of the proposed EIR. The scoping meeting is not a public hearing on the Draft General Plan. The public hearing schedule for the Draft General Plan is anticipated to occur later this year.

Members of the public and public agencies are invited to provide comments to the City at the scoping meeting, which will take place as follows:

Date:

Tuesday July 23, 2013

Time:

6:00 - 8:00 PM

Place:

City Council Chambers

Capitola City Hall 420 Capitola Avenue Capitola, CA 95010

Date 6.27.13

COMMUNITY DEVELOPMENT Director

APPENDIX A2: Comment Letters Received on the Notice of Preparation

APPENDIX A

NOP COMMENT LETTERS

Federal Agencies

1. Federal Emergency Management Administration – 07/03/2013

State Agencies

- 2. California Department of Transportation, Caltrans 07/29/2013
- 3. California Department of Fish and Wildlife -07/24/2013

Local Agencies

4. City of Santa Cruz – 07/25/2013

General Public

5. Nickell III, Jesse L. – 07/02/2013

.....

JUL 0 8 2013 CITY OF CAPITOLA

U.S. Department of Homeland Security FEMA Region IX 1111 Broadway, Suite 1200 Oakland, CA. 94607-4052

July 3, 2013

Richard Grunow, Community Development Director City of Capitola 420 Capitola Avenue Capitola, California 95010

Dear Mr. Grunow:

This is in response to your request for comments on the Notice of Preparation (NOP), City of Capitola General Plan Update project.

Please review the current effective countywide Flood Insurance Rate Maps (FIRMs) for the County of Santa Cruz (Community Number 060353) and City of Capitola (Community Number 060354), Maps revised May 16, 2012. Please note that the City of Capitola, Santa Cruz County, California is a participant in the National Flood Insurance Program (NFIP). The minimum, basic NFIP floodplain management building requirements are described in Vol. 44 Code of Federal Regulations (44 CFR), Sections 59 through 65.

A summary of these NFIP floodplain management building requirements are as follows:

- All buildings constructed within a riverine floodplain, (i.e., Flood Zones A, AO, AH, AE, and A1 through A30 as delineated on the FIRM), must be elevated so that the lowest floor is at or above the Base Flood Elevation level in accordance with the effective Flood Insurance Rate Map.
- If the area of construction is located within a Regulatory Floodway as delineated on the FIRM, any *development* must not increase base flood elevation levels. The term development means any man-made change to improved or unimproved real estate, including but not limited to buildings, other structures, mining, dredging, filling, grading, paving, excavation or drilling operations, and storage of equipment or materials. A hydrologic and hydraulic analysis must be performed prior to the start of development, and must demonstrate that the development would not cause any rise in base flood levels. No rise is permitted within regulatory floodways.

Richard Grunow, Community Development Director Page 2 July 3, 2013

- All buildings constructed within a coastal high hazard area, (any of the "V" Flood Zones as delineated on the FIRM), must be elevated on pilings and columns, so that the lowest horizontal structural member, (excluding the pilings and columns), is elevated to or above the base flood elevation level. In addition, the posts and pilings foundation and the structure attached thereto, is anchored to resist flotation, collapse and lateral movement due to the effects of wind and water loads acting simultaneously on all building components.
- Upon completion of any development that changes existing Special Flood Hazard Areas, the NFIP directs all participating communities to submit the appropriate hydrologic and hydraulic data to FEMA for a FIRM revision. In accordance with 44 CFR, Section 65.3, as soon as practicable, but not later than six months after such data becomes available, a community shall notify FEMA of the changes by submitting technical data for a flood map revision. To obtain copies of FEMA's Flood Map Revision Application Packages, please refer to the FEMA website at http://www.fema.gov/business/nfip/forms.shtm.

Please Note:

Many NFIP participating communities have adopted floodplain management building requirements which are more restrictive than the minimum federal standards described in 44 CFR. Please contact the local community's floodplain manager for more information on local floodplain management building requirements. The Capitola floodplain manager can be reached by calling Mark Wheeler, Building Official, at (831) 475-7300. The Santa Cruz County floodplain manager can be reached by calling Antonella Gentile, Planner, at (831) 454-3164.

If you have any questions or concerns, please do not hesitate to call Michael Hornick of the Mitigation staff at (510) 627-7260.

Sincerely,

Gregor Blackburn, CFM, Branch Chief

Floodplain Management and Insurance Branch

cc:

Mark Wheeler, Building Official, City of Capitola

Antonella Gentile, Planner, Santa Cruz County

Ed Perez/Amanda Peisch, State of California, Department of Water Resources, South Central Region Office

Michael Hornick, NFIP Planner, DHS/FEMA Region IX

Alessandro Amaglio, Environmental Officer, DHS/FEMA Region IX

DEPARTMENT OF TRANSPORTATION

50 HIGUERA STREET SAN LUIS OBISPO, CA 93401-5415 PHONE (805) 549-3101 FAX (805) 549-3329 TTY 711 http://www.dot.ca.gov/dist05/

Flex your power! Be energy efficient!

2013072002

1-12.93

SCH#:

PM:

July 29, 2013

Mr. Richard Grunow Community Development Director City of Capitola 420 Capitola Avenue Capitola, CA 95010

Dear Mr. Grunow:

COMMENTS ON THE NOTICE OF PREPARATION (NOP) FOR THE CITY OF CAPITOLA GENERAL PLAN UPDATE

The California Department of Transportation (Department), District 5, Development Review, has reviewed the above referenced project and offers the following comments:

- 1. The Department supports local development that is consistent with State planning priorities intended to promote equity, strengthen the economy, protect the environment, and promote public health and safety. We accomplish this by working with local jurisdictions to achieve a shared vision of how the transportation system should and can accommodate interregional and local travel and development.
- 2. We anticipate the conditions of approval for a General Plan Update to include requiring a comprehensive regional traffic study that includes State Route 1 mainline operations, and look forward to reviewing it. Please visit the Department's Internet site for a copy of our *Guidelines for the Preparation of Traffic Impact Studies* at: http://www.dot.ca.gov/hq/traffops/developserv/operationalsystems/reports/tisguide.pdf. An alternative method that produces technically comparable results can also be use.
- 3. The Department is responsible for the safety, operations, and maintenance of the State transportation system; therefore, our Level of Service (LOS) standards should be used to determine the significance of a project's impact. We endeavor to maintain a target LOS at the transition between LOS C and LOS D on all State transportation facilities. In cases where a State facility is already operating at an unacceptable LOS, <u>any</u> additional trips should be considered a significant cumulative traffic impact, and should be mitigated accordingly.

Thank you for the opportunity to comment on the NOP for the City of Capitola General Plan Update, and for your consideration and action upon these issues. If you have any questions or concerns, or need further clarification on the items discussed above, please do not hesitate to call me at (805) 549-3099 or e-mail jennifer.calate@dot.ca.gov.

Sincerely,

JENNIFER CALATÉ

Associate Transportation Planner

District 5 Development Review Coordinator

From: Farinha, Melissa@Wildlife [mailto:Melissa.Farinha@wildlife.ca.gov]

Sent: Wednesday, July 24, 2013 12:49 PM

To: Grunow, Rich

Cc: Patin, Reanna@Wildlife

Subject: Capitola General Plan Update NOP - SCH# 2013072002

Dear Mr. Richard Grunow,

The Department of Fish and Wildlife has the following comments regarding the Capitola General Plan Update.

Please incorporate, where suitable, into the Capitola General Plan Update the following coho recovery actions for the Aptos-Soquel Hydrologic Subunit Area from the Department of Fish and Wildlife's 2004 Recovery Strategy for California Coho Salmon:

- Implement elements of the Soquel Creek Watershed Assessment and Enhancement Project Plan (available at: http://www.rcdsantacruz.org/pages/resources/local-watershedplans.php) that are consistent with the coho salmon recovery strategy. Specifically, focusing on preservation of base flow, restoration of flood plains, improvements to coho salmon passage and best management practices to reduce sedimentation of in-stream habitat.
- 2. Maintain year round in-stream flows for coho salmon by amendments to the adjudication, water conservation, shallow recharge opportunities, shallow-well gauging, deep-well gauging, stream-gauging, self-monitoring of diversions, and conjunctive water management for recovery of groundwater levels.

Thank You,

Melissa A. Farinha California Department of Fish and Wildlife Environmental Scientist - Santa Cruz County 7329 Silverado Trail Napa, CA 94558

JUL \$ 1 2013
CITY OF CAPITOLA

212 Locust Street, Suite C, Santa Cruz, CA 95060 • (831) 420-5200 • Fax (831) 420-5201

July 25, 2013

Richard Grunow Community Development Director City of Capitola 420 Capitola Avenue Capitola, CA 95010

RE: Notice of Preparation of a Programmatic EIR for the Capitola General Plan Update

Dear Mr. Grunow:

The City of Santa Cruz Water Department has reviewed the Notice of Preparation for a Programmatic EIR for the City of Capitola General Plan Update. As you know, our department supplies water to the westernmost portion of the City of Capitola. It is our understanding that there are land use changes proposed in the General Plan Update that could potentially change water demands in our service area. The EIR should, therefore, provide the following information:

- A detailed description of land use changes and associated build out projections within the City of Santa Cruz Water Service Area;
- Changes in projected water demand associated with any proposed land use changes;
- An analysis of the ability of the City's water system to meet any new demands.

The City's Water System relies entirely on rainfall, runoff, and groundwater within watersheds located in the County. As a result, the City's system is vulnerable to shortages in dry years. Compounding the problem are new requirements to provide more water for steelhead and coho salmon in the surface waters that our system relies on to supply water. The City has, therefore, been pursuing a three tiered approach for water planning that includes conservation, curtailment during droughts, and development of a new water supply.

We encourage you to utilize in your analysis the vast amount of information already contained in our 2010 Urban Water Management Plan (2011); Integrated Water Plan (2005); General Plan 2030 Final Environmental impact Report (2012); and our recently released Draft Environmental Impact Report for the Proposed scwd² Regional Seawater Desalination Project (May 2013).

Thank you for giving us the opportunity to comment on the notice of preparation. We would be interested in meeting as the details of the proposed land use changes emerge. If you have any questions please contact Melissa Hetrick our Environmental Projects Analyst (831-420-5322; mhetrick@cityofsantacruz.com) or Toby Goddard our Water Conservation Manager (831-420-5232; tgoddard@cityofsantacruz.com).

Sincerel

Bill Kocher Director

City of Santa Cruz Water Department

Cc: Linette Almond, Deputy Director, City of Santa Cruz Water Department
Toby Goddard, Water Conservation Manager, City of Santa Cruz Water Department
Melissa Hetrick, Environmental Projects Analyst, City of Santa Cruz Water Department
Juliana Rebagliati, Director, Planning and Community Development, City of Santa Cruz

How does the new hotel in village read in the first draft? Jesse L. Nickell III

Sr. Vice President of Construction - BARRY SWENSON BUILDER

5200 Soquel Avenue, Suite 202, Santa Cruz, CA 95062

Direct: 831.475.7100 x 113 | Fax: 831.475.4544

jnickell@barryswensonbuilder.com

www.BarrySwensonBuilder.com

STAY CONNECTED: The Bay Area Real Estate Blog
CONFIDENTIALITY NOTICE: This e-mail transmission, and any documents, files or previous e-mail messages attached to it, may contain confidential information that is legally privileged. If you are not the intended recipient, or a person responsible for delivering it to the intended recipient, you are hereby notified that any disclosure, copying distribution or use of any of the information contained in or attached to this message is STRICTLY PROHIBITED. If you have received this transmission in error, please immediately destroy the original transmission and its attachments without reading them or saving them to disk. Thank you.

From: Capitola General Plan Update EIR

[mailto:ahill=planningcenter.com@mail182.wdc02.mcdlv.net] On Behalf Of Capitola General

Plan Update EIR

Sent: Monday, July 01, 2013 4:28 PM To: inickell@barryswensonbuilder.com

Subject: Capitola General Plan Update EIR Scoping Period Has Begun

PUBLIC SCOPING PERIOD BEGINS

The City of Capitola is preparing an Environmental Impact Report (EIR) for its General Plan Update. On July 1, 2013, the City issued a Notice of Preparation, announcing the beginning of the public scoping period for the EIR, which runs until August 1, 2013.

The public scoping period is an opportunity for members of the public to provide comments in writing on the scope and content of the EIR, including issues to be considered and alternatives to be analyzed. Comments should focus on the potential environmental impacts of the General Plan Update, rather than on the content of the Plan. A separate comment period focused on the General Plan itself will take place later this vear.

Please send written comments on the scope and contents of the EIR to Richard Grunow, Community Development Director, 420 Capitola Avenue, Capitola, CA 95010, by August 1, 2013. Alternately, you may reply to this email.

Members of the public are also invited to provide comments to the City on the scope and contents of the EIR at the scoping meeting, which will take place as follows:

Date: Tuesday July 23, 2013

Time: 6:00 8:00 PM

Place: City Council Chambers

Capitola City Hall 420 Capitola Avenue Capitola, CA 95010

To download the Notice of Preparation (NOP), please clickhere.

Copyright 2013 City of Capitola, All rights reserved.

You are receiving this email because you expressed interest in the General Plan Update.

Our mailing address is:

City of Capitola 420 Capitola Avenue Capitola, CA 95010

Add us to your address book

unsubscribe from this list update subscription preferences

APPENDIX B

AIR QUALITY

.....

Parenthetical CALEEMOD Assumptions For: City of Capitola Existing and Year 2035 Conditions Date: October 2013

EXISTING LAND USES

Existing	Land Use Type	Unit Type
1,935	Single-Family Residential	Dwelling Units
2,857	Multi-Family Residential	Dwelling Units
743	Mobile Home Park	Dwelling Units
1,012,547	General Office	1,000 square feet
2,528,552	Retail	1,000 square feet
488,165	Industrial	1,000 square feet

AREA AND MOBILE SOURCES

CalEEMod area source and operational defaults rates have been utilized. Default rates have not been modified.

YEAR 2035 LAND USES

Year 2035	Land Use Type	Unit Type
1,944	Single-Family Residential	Dwelling Units
2,911	Multi-Family Residential	Dwelling Units
743	Mobile Home Park	Dwelling Units
1,154,327	General Office	1,000 square feet
2,882,572	Retail	1,000 square feet
556,459	Industrial	1,000 square feet

AREA AND MOBILE SOURCES

CalEEMod area source and operational defaults rates have been utilized. Default rates have not been modified.

Capitola General Plan Update EIR

Date: 9/30/2013 4:32 PM

North Central Coast Air Basin, Annual

1.0 Project Characteristics

1.1 Land Usage

Land Uses	Size	Metric	Lot Acreage	Floor Surface Area	Population
Single Family Housing	1,935.00	Dwelling Unit	628.25	3,483,000.00	5534
Apartments Low Rise	2,857.00	Dwelling Unit	178.56	2,857,000.00	8171
Mobile Home Park	743.00	Dwelling Unit	93.60	891,600.00	2125
General Office Building	1,012.55	1000sqft	23.24	1,012,547.00	0
Strip Mall	2,528.55	1000sqft	58.05	2,528,552.00	0
General Light Industry	488.17	1000sqft	11.21	488,165.00	0

1.2 Other Project Characteristics

UrbanizationUrbanWind Speed (m/s)2.8Precipitation Freq (Days)53Climate Zone4Operational Year2014

Utility Company Pacific Gas & Electric Company

 CO2 Intensity
 641.35
 CH4 Intensity
 0.029
 N2O Intensity
 0.006

 (Ib/MWhr)
 (Ib/MWhr)
 (Ib/MWhr)
 (Ib/MWhr)

1.3 User Entered Comments & Non-Default Data

Project Characteristics -

Land Use - Baseline

Construction Phase - Operations Run Only

Off-road Equipment -

Table Name	Column Name	Default Value	New Value
tblConstructionPhase	NumDays	600.00	1.00
tblLandUse	LandUseSquareFeet	1,012,550.00	1,012,547.00
tblLandUse	LandUseSquareFeet	2,528,550.00	2,528,552.00
tblLandUse	LandUseSquareFeet	488,170.00	488,165.00
tblTripsAndVMT	WorkerTripNumber	18.00	10.00

2.0 Emissions Summary

2.2 Overall Operational

Unmitigated Operational

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	tons/yr								M	Г/уг						
Area	408.6378	5.2114	469.9772	0.1693		60.3321	60.3321		60.3304	60.3304	5,717.4209	2,465.007 8	8,182.428 7	5.3480	0.4497	8,434.1499
Energy	0.8016	6.9594	3.7155	0.0437		0.5539	0.5539		0.5539	0.5539	0.0000	31,720.78 17	31,720.78 17	1.2277	0.3680	31,860.636 8
Mobile	324.4087	338.9156	1,552.718 7	1.7697	113.5270	4.3370	117.8640	30.4141	3.9792	34.3933	0.0000	148,152.6 153	148,152.6 153	9.6236	0.0000	148,354.70 98
Waste						0.0000	0.0000		0.0000	0.0000	1,683.3919	0.0000	1,683.391 9	99.4856	0.0000	3,772.5897
Water						0.0000	0.0000		0.0000	0.0000	266.7398	1,784.163 2	2,050.903 0	27.4774	0.6636	2,833.6408
Total	733.8481	351.0863	2,026.411 3	1.9827	113.5270	65.2230	178.7500	30.4141	64.8634	95.2775	7,667.5526	184,122.5 679	191,790.1 205	143.1623	1.4813	195,255.72 70

Mitigated Operational

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					tons	s/yr							MT	√yr		
Area	408.6378	5.2114	469.9772	0.1693		60.3321	60.3321		60.3304	60.3304	5,717.4209	2,465.007 8	8,182.428 7	5.3480	0.4497	8,434.1499
Energy	0.8016	6.9594	3.7155	0.0437		0.5539	0.5539		0.5539	0.5539	0.0000	31,720.78 17	31,720.78 17	1.2277	0.3680	31,860.636 8
Mobile	324.4087	338.9156	1,552.718 7	1.7697	113.5270	4.3370	117.8640	30.4141	3.9792	34.3933	0.0000	148,152.6 153	148,152.6 153	9.6236	0.0000	148,354.70 98
Waste						0.0000	0.0000		0.0000	0.0000	1,683.3919	0.0000	1,683.391 9	99.4856	0.0000	3,772.5897
Water						0.0000	0.0000		0.0000	0.0000	266.7398	1,784.163 2	2,050.903 0	27.4724	0.6626	2,833.2153
Total	733.8481	351.0863	2,026.411 3	1.9827	113.5270	65.2230	178.7500	30.4141	64.8634	95.2775	7,667.5526	184,122.5 679	191,790.1 205	143.1573	1.4803	195,255.30 15

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio-CO2	Total CO2	CH4	N20	CO2e
Percent Reduction	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	3.4925e- 003	0.0702	2.1794e- 004

3.0 Construction Detail

4.0 Operational Detail - Mobile

4.1 Mitigation Measures Mobile

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					tons	s/yr							MT	-/yr		
Mitigated	324.4087	338.9156	1,552.718 7	1.7697	113.5270	4.3370	117.8640	30.4141	3.9792	34.3933	0.0000	148,152.6 153	148,152.6 153	9.6236	0.0000	148,354.70 98
Unmitigated	324.4087	338.9156	1,552.718 7	1.7697	113.5270	4.3370	117.8640	30.4141	3.9792	34.3933	0.0000	148,152.6 153	148,152.6 153	9.6236	0.0000	148,354.70 98

4.2 Trip Summary Information

	Aver	age Daily Trip Ra	ate	Unmitigated	Mitigated
Land Use	Weekday	Saturday	Sunday	Annual VMT	Annual VMT
Apartments Low Rise	18,827.63	20,456.12	17341.99	54,299,101	54,299,101
Mobile Home Park	3,707.57	3,715.00	3239.48	10,491,510	10,491,510
General Light Industry	3,402.54	644.38	331.96	7,502,753	7,502,753
Single Family Housing	18,517.95	19,504.80	16969.95	53,117,213	53,117,213
Strip Mall	112,065.34	106,300.24	51658.28	158,026,134	158,026,134
General Office Building	11,148.18	2,399.74	992.30	20,187,580	20,187,580
Total	167,669.21	153,020.29	90,533.95	303,624,292	303,624,292

4.3 Trip Type Information

		Miles			Trip %			Trip Purpos	e %
Land Use	H-W or C-W	H-S or C-C	H-O or C-NW	H-W or C-	H-S or C-C	H-O or C-NW	Primary	Diverted	Pass-by
Apartments Low Rise	10.80	7.30	7.50	44.00	18.80	37.20	86	11	3
Mobile Home Park	10.80	7.30	7.50	44.00	18.80	37.20	86	11	3
General Light Industry	9.50	7.30	7.30	59.00	28.00	13.00	92	5	3
Single Family Housing	10.80	7.30	7.50	44.00	18.80	37.20	86	11	3
Strip Mall	9.50	7.30	7.30	16.60	64.40	19.00	45	40	15
General Office Building	9.50	7.30	7.30	33.00	48.00	19.00	77	19	4

4.4 Fleet Mix

LD	DA	LDT1	LDT2	MDV	LHD1	LHD2	MHD	HHD	OBUS	UBUS	MCY	SBUS	MH
0.4	164735	0.039298	0.210653	0.166464	0.052304	0.007425	0.015372	0.026867	0.002938	0.002238	0.008122	0.000854	0.002730

5.0 Energy Detail

Historical Energy Use: N

5.1 Mitigation Measures Energy

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category		tons/yr											MT	/yr		
Electricity Mitigated						0.0000	0.0000		0.0000	0.0000	0.0000	23,787.51 09	23,787.51 09	1.0756	0.2225	23,879.085 5
Electricity Unmitigated						0.0000	0.0000		0.0000	0.0000	0.0000	23,787.51 09	23,787.51 09	1.0756	0.2225	23,879.085 5
NaturalGas Mitigated	0.8016	6.9594	3.7155	0.0437		0.5539	0.5539		0.5539	0.5539	0.0000	7,933.270 8	7,933.270 8	0.1521	0.1454	7,981.5513
NaturalGas Unmitigated	0.8016	6.9594	3.7155	0.0437		0.5539	0.5539		0.5539	0.5539	0.0000	7,933.270 8	7,933.270 8	0.1521	0.1454	7,981.5513

5.2 Energy by Land Use - NaturalGas

<u>Unmitigated</u>

	NaturalGa s Use	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Land Use	kBTU/yr					ton	s/yr							МТ	/yr		
General Light Industry	1.33806e+ 007	0.0722	0.6559	0.5510	3.9400e- 003		0.0499	0.0499		0.0499	0.0499	0.0000	714.0399	714.0399	0.0137	0.0131	718.3854
General Office Building	1.74361e+ 007	0.0940	0.8547	0.7180	5.1300e- 003		0.0650	0.0650		0.0650	0.0650	0.0000	930.4545	930.4545	0.0178	0.0171	936.1171
Mobile Home Park	1.24759e+ 007	0.0673	0.5749	0.2446	3.6700e- 003		0.0465	0.0465		0.0465	0.0465	0.0000	665.7635	665.7635	0.0128	0.0122	669.8152
Single Family Housing	6.82725e+ 007	0.3681	3.1459	1.3387	0.0201		0.2544	0.2544		0.2544	0.2544	0.0000	3,643.282 1	3,643.2821	0.0698	0.0668	3,665.4545
Strip Mall	6.29609e+ 006	0.0340	0.3086	0.2593	1.8500e- 003		0.0235	0.0235		0.0235	0.0235	0.0000	335.9836	335.9836	6.4400e- 003	6.1600e- 003	338.0283
Apartments Low Rise	3.08027e+ 007	0.1661	1.4193	0.6040	9.0600e- 003		0.1148	0.1148		0.1148	0.1148	0.0000	1,643.747 2	1,643.7472	0.0315	0.0301	1,653.7508
Total		0.8016	6.9594	3.7155	0.0437		0.5539	0.5539		0.5539	0.5539	0.0000	7,933.270 8	7,933.2708	0.1521	0.1455	7,981.5513

Mitigated

	NaturalGa s Use	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Land Use	kBTU/yr					ton	s/yr							МТ	-/yr		
General Light Industry	1.33806e+ 007	0.0722	0.6559	0.5510	3.9400e- 003		0.0499	0.0499		0.0499	0.0499	0.0000	714.0399	714.0399	0.0137	0.0131	718.3854
General Office Building	1.74361e+ 007	0.0940	0.8547	0.7180	5.1300e- 003		0.0650	0.0650		0.0650	0.0650	0.0000	930.4545	930.4545	0.0178	0.0171	936.1171
Mobile Home Park	1.24759e+ 007	0.0673	0.5749	0.2446	3.6700e- 003		0.0465	0.0465		0.0465	0.0465	0.0000	665.7635	665.7635	0.0128	0.0122	669.8152
Single Family Housing	6.82725e+ 007	0.3681	3.1459	1.3387	0.0201		0.2544	0.2544		0.2544	0.2544	0.0000	3,643.282 1	3,643.2821	0.0698	0.0668	3,665.4545
Strip Mall	6.29609e+ 006	0.0340	0.3086	0.2593	1.8500e- 003		0.0235	0.0235		0.0235	0.0235	0.0000	335.9836	335.9836	6.4400e- 003	6.1600e- 003	338.0283
Apartments Low Rise	3.08027e+ 007	0.1661	1.4193	0.6040	9.0600e- 003		0.1148	0.1148		0.1148	0.1148	0.0000	1,643.747 2	1,643.7472	0.0315	0.0301	1,653.7508
Total		0.8016	6.9594	3.7155	0.0437		0.5539	0.5539		0.5539	0.5539	0.0000	7,933.270 8	7,933.2708	0.1521	0.1455	7,981.5513

5.3 Energy by Land Use - Electricity

Unmitigated

	Electricity Use	Total CO2	CH4	N2O	CO2e
Land Use	kWh/yr		M٦	Γ/yr	
Apartments Low Rise	1.05186e+ 007	3,059.9946	0.1384	0.0286	3,071.7746
General Light Industry	4.40813e+ 006	1,282.3756	0.0580	0.0120	1,287.3123
General Office Building	1.99573e+ 007	5,805.8078	0.2625	0.0543	5,828.1584
Mobile Home Park	3.63991e+ 006			003	1,062.9687
Single Family Housing	1.36861e+ 007	3,981.4547			3,996.7821
Strip Mall	2.95588e+ 007	8,598.9860	0.3888	0.0805	8,632.0894
Total		23,787.510 9	1.0756	0.2226	23,879.085 5

Mitigated

	Electricity Use	Total CO2	CH4	N2O	CO2e
Land Use	kWh/yr		MT	Г/уг	
Apartments Low Rise	1.05186e+ 007	3,059.9946	0.1384	0.0286	3,071.7746
General Light Industry	4.40813e+ 006	1,282.3756	0.0580	0.0120	1,287.3123
General Office Building	1.99573e+ 007	5,805.8078	0.2625	0.0543	5,828.1584
Mobile Home Park	3.63991e+ 006			9.9100e- 003	1,062.9687
Single Family Housing	1.36861e+ 007	3,981.4547	0.1800	0.0373	3,996.7821
Strip Mall	2.95588e+ 007	8,598.9860	0.3888	0.0805	8,632.0894
Total		23,787.510 9	1.0756	0.2226	23,879.085 5

6.0 Area Detail

6.1 Mitigation Measures Area

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					tons	s/yr							МТ	-/yr		
Mitigated	408.6378	5.2114	469.9772	0.1693		60.3321	60.3321		60.3304	60.3304	5,717.4209	2,465.007 8	8,182.428 7	5.3480	0.4497	8,434.1499
Unmitigated	408.6378	5.2114	469.9772	0.1693		60.3321	60.3321		60.3304	60.3304	5,717.4209	2,465.007 8	8,182.428 7	5.3480	0.4497	8,434.1499

6.2 Area by SubCategory

Unmitigated

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e	
SubCategory	tons/yr										MT/yr						
Architectural Coating	15.9814					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
Consumer Products	43.9793					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
Hearth	347.3002	4.7119	427.8365	0.1671		60.1084	60.1084		60.1067	60.1067	5,717.4209	2,397.802 9	8,115.223 8	5.2762	0.4497	8,365.4373	
Landscaping	1.3769	0.4994	42.1406	2.1700e- 003		0.2237	0.2237		0.2237	0.2237	0.0000	67.2049	67.2049	0.0718	0.0000	68.7125	
Total	408.6378	5.2114	469.9771	0.1693		60.3321	60.3321		60.3304	60.3304	5,717.4209	2,465.007 8	8,182.428 7	5.3480	0.4497	8,434.1499	

Mitigated

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e	
SubCategory	tons/yr										MT/yr						
Architectural Coating	15.9814					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
Consumer Products	43.9793					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
Hearth	347.3002	4.7119	427.8365	0.1671		60.1084	60.1084		60.1067	60.1067	5,717.4209	2,397.802 9	8,115.223 8	5.2762	0.4497	8,365.4373	
Landscaping	1.3769	0.4994	42.1406	2.1700e- 003		0.2237	0.2237		0.2237	0.2237	0.0000	67.2049	67.2049	0.0718	0.0000	68.7125	
Total	408.6378	5.2114	469.9771	0.1693		60.3321	60.3321		60.3304	60.3304	5,717.4209	2,465.007 8	8,182.428 7	5.3480	0.4497	8,434.1499	

7.1 Mitigation Measures Water

	Total CO2	CH4	N2O	CO2e
Category		МТ	/yr	
Mitigated	2,050.9030	27.4724	0.6626	2,833.2153
Unmitigated	2,050.9030	27.4774	0.6636	2,833.6408

7.2 Water by Land Use Unmitigated

	Indoor/Out door Use	Total CO2	CH4	N2O	CO2e
Land Use	Mgal		M	Г/уг	
Apartments Low Rise	186.145 / 117.352	471.5572	6.0842	0.1471	644.9199
General Light Industry	112.889 / 0	213.5161	3.6865	0.0885	318.3745
	179.964 / 110.301	452.6872	5.8820	0.1422	620.2812
Mobile Home Park	48.4094 / 30.519	122.6346	1.5823	0.0383	167.7198
	126.073 / 79.4808	319.3781	4.1207	0.0996	436.7939
Strip Mall	187.296 / 114.794	471.1298	6.1217	0.1480	645.5516
Total		2,050.9030	27.4774	0.6636	2,833.6409

Mitigated

	Indoor/Out door Use	Total CO2	CH4	N2O	CO2e
Land Use	Mgal		M	Γ/yr	
Apartments Low Rise	186.145 / 117.352	471.5572	6.0831	0.1469	644.8257
General Light Industry	112.889 / 0	213.5161	3.6859	0.0884	318.3174
General Office Building	110.301	452.6872		0.1419	620.1901
Mobile Home Park		122.6346	1.5820	0.0382	167.6953
Single Family Housing	126.073 / 79.4808	319.3781	4.1200	0.0995	436.7300
Strip Mall	187.296 / 114.794	471.1298	6.1206	0.1477	645.4568
Total		2,050.9030	27.4724	0.6626	2,833.2153

8.0 Waste Detail

8.1 Mitigation Measures Waste

Category/Year

	Total CO2	CH4	N2O	CO2e
		MT	/yr	
Unmitigated	1,683.3919	99.4856	0.0000	3,772.5897
Mitigated	1,683.3919	99.4856	0.0000	3,772.5897

8.2 Waste by Land Use

<u>Unmitigated</u>

	Waste Disposed	Total CO2	CH4	N2O	CO2e
Land Use	tons		M	Г/уг	
Apartments Low Rise	1314.22	266.7748	15.7659	0.0000	597.8595
General Light Industry	605.33	122.8765	7.2618	0.0000	275.3742
General Office Building	941.67	191.1505	11.2967	0.0000	428.3806
Mobile Home Park	341.78	69.3783	4.1001	0.0000	155.4811
Single Family Housing	2434.96	494.2749	29.2108	0.0000	1,107.7019
Strip Mall	2654.98	538.9370	31.8503	0.0000	1,207.7924
Total		1,683.3919	99.4856	0.0000	3,772.5897

Mitigated

	Waste Disposed	Total CO2	CH4	N2O	CO2e
Land Use	tons		M	Γ/yr	
Apartments Low Rise	1314.22	266.7748	15.7659	0.0000	597.8595
General Light Industry	605.33	122.8765	7.2618	0.0000	275.3742
General Office Building	941.67	191.1505	11.2967	0.0000	428.3806
Mobile Home Park	341.78	69.3783	4.1001	0.0000	155.4811
Single Family Housing	2434.96	494.2749	29.2108	0.0000	1,107.7019
Strip Mall	2654.98	538.9370	31.8503	0.0000	1,207.7924
Total		1,683.3919	99.4856	0.0000	3,772.5897

9.0 Operational Offroad

Equipment Type	Number	Hours/Day	Days/Year	Horse Power	Load Factor	Fuel Type

10.0 Vegetation

Capitola General Plan Update EIR North Central Coast Air Basin, Summer

Date: 9/30/2013 4:36 PM

1.0 Project Characteristics

1.1 Land Usage

Land Uses	Size	Metric	Lot Acreage	Floor Surface Area	Population
Single Family Housing	1,935.00	Dwelling Unit	628.25	3,483,000.00	5534
Apartments Low Rise	2,857.00	Dwelling Unit	178.56	2,857,000.00	8171
Mobile Home Park	743.00	Dwelling Unit	93.60	891,600.00	2125
General Office Building	1,012.55	1000sqft	23.24	1,012,547.00	0
Strip Mall	2,528.55	1000sqft	58.05	2,528,552.00	0
General Light Industry	488.17	1000sqft	11.21	488,165.00	0

1.2 Other Project Characteristics

UrbanizationUrbanWind Speed (m/s)2.8Precipitation Freq (Days)53Climate Zone4Operational Year2014

Utility Company Pacific Gas & Electric Company

 CO2 Intensity
 641.35
 CH4 Intensity
 0.029
 N2O Intensity
 0.006

 (Ib/MWhr)
 (Ib/MWhr)
 (Ib/MWhr)
 (Ib/MWhr)

1.3 User Entered Comments & Non-Default Data

Project Characteristics -

Land Use - Baseline

Construction Phase - Operations Run Only

Off-road Equipment -

Table Name	Column Name	Default Value	New Value
tblConstructionPhase	NumDays	600.00	1.00
tblLandUse	LandUseSquareFeet	1,012,550.00	1,012,547.00
tblLandUse	LandUseSquareFeet	2,528,550.00	2,528,552.00
tblLandUse	LandUseSquareFeet	488,170.00	488,165.00
tblTripsAndVMT	WorkerTripNumber	18.00	10.00

2.0 Emissions Summary

2.2 Overall Operational

Unmitigated Operational

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e		
Category		lb/day											lb/day					
Area	8,814.5867	120.4743	10,903.26 63	4.1001		1,468.545 0	1,468.5450		1,468.5020	1,468.5020	153,716.52 96	65,289.58 94	219,006.1 190	142.7342	12.0910	225,751.73 58		
Energy	4.3924	38.1334	20.3586	0.2396		3.0348	3.0348		3.0348	3.0348		47,917.44 71	47,917.44 71	0.9184	0.8785	48,209.064 7		
Mobile	1,849.2657	1,907.0653	8,706.681 8	11.1936	710.2872	26.1936	736.4808	189.7915	24.0324	213.8239		1,033,349. 5460	1,033,349. 5460	64.3490		1,034,700. 8751		
Total	10,668.244 8	2,065.6730	19,630.30 67	15.5332	710.2872	1,497.773 4	2,208.0606	189.7915	1,495.5691	1,685.3606	153,716.52 96	1,146,556. 5826	1,300,273. 1122	208.0016	12.9695	1,308,661. 6757		

Mitigated Operational

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	lb/day										lb/day					
Area	8,814.5867	120.4743	10,903.26 63	4.1001		1,468.545 0	1,468.5450		1,468.5020	1,468.5020	153,716.52 96	65,289.58 94	219,006.1 190	142.7342	12.0910	225,751.73 58
Energy	4.3924	38.1334	20.3586	0.2396		3.0348	3.0348		3.0348	3.0348		47,917.44 71	47,917.44 71	0.9184	0.8785	48,209.064 7
Mobile	1,849.2657	1,907.0653	8,706.681 8	11.1936	710.2872	26.1936	736.4808	189.7915	24.0324	213.8239		1,033,349. 5460	1,033,349. 5460	64.3490		1,034,700. 8751
Total	10,668.244 8	2,065.6730	19,630.30 67	15.5332	710.2872	1,497.773 4	2,208.0606	189.7915	1,495.5691	1,685.3606	153,716.52 96	1,146,556. 5826	1,300,273. 1122	208.0016	12.9695	1,308,661. 6757

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio-CO2	Total CO2	CH4	N20	CO2e
Percent Reduction	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

3.0 Construction Detail

4.0 Operational Detail - Mobile

4.1 Mitigation Measures Mobile

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	ay							lb/d	day		
Mitigated	1,849.2657	1,907.0653	8,706.681 8	11.1936	710.2872	26.1936	736.4808	189.7915	24.0324	213.8239		1,033,349. 5460	1,033,349. 5460	64.3490		1,034,700. 8751
Unmitigated	1,849.2657	1,907.0653	8,706.681 8	11.1936	710.2872	26.1936	736.4808	189.7915	24.0324	213.8239		1,033,349. 5460	1,033,349. 5460	64.3490		1,034,700. 8751

4.2 Trip Summary Information

	Aver	age Daily Trip Ra	ate	Unmitigated	Mitigated
Land Use	Weekday	Saturday	Sunday	Annual VMT	Annual VMT
Apartments Low Rise	18,827.63	20,456.12	17341.99	54,299,101	54,299,101
Mobile Home Park	3,707.57	3,715.00	3239.48	10,491,510	10,491,510
General Light Industry	3,402.54	644.38	331.96	7,502,753	7,502,753
Single Family Housing	18,517.95	19,504.80	16969.95	53,117,213	53,117,213
Strip Mall	112,065.34	106,300.24	51658.28	158,026,134	158,026,134
General Office Building	11,148.18	2,399.74	992.30	20,187,580	20,187,580
Total	167,669.21	153,020.29	90,533.95	303,624,292	303,624,292

4.3 Trip Type Information

		Miles			Trip %			Trip Purpos	e %
Land Use	H-W or C-W	H-S or C-C	H-O or C-NW	H-W or C-	H-S or C-C	H-O or C-NW	Primary	Diverted	Pass-by
Apartments Low Rise	10.80	7.30	7.50	44.00	18.80	37.20	86	11	3
Mobile Home Park	10.80	7.30	7.50	44.00	18.80	37.20	86	11	3
General Light Industry	9.50	7.30	7.30	59.00	28.00	13.00	92	5	3
Single Family Housing	10.80	7.30	7.50	44.00	18.80	37.20	86	11	3
Strip Mall	9.50	7.30	7.30	16.60	64.40	19.00	45	40	15
General Office Building	9.50	7.30	7.30	33.00	48.00	19.00	77	19	4

4.4 Fleet Mix

LD	DA	LDT1	LDT2	MDV	LHD1	LHD2	MHD	HHD	OBUS	UBUS	MCY	SBUS	MH
0.4	164735	0.039298	0.210653	0.166464	0.052304	0.007425	0.015372	0.026867	0.002938	0.002238	0.008122	0.000854	0.002730

5.0 Energy Detail

Historical Energy Use: N

5.1 Mitigation Measures Energy

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	ay							lb/d	day		
NaturalGas Mitigated	4.3924	38.1334	20.3586	0.2396		3.0348	3.0348		3.0348	3.0348		47,917.44 71	47,917.44 71	0.9184	0.8785	48,209.064 7
NaturalGas Unmitigated	4.3924	38.1334	20.3586	0.2396		3.0348	3.0348		3.0348	3.0348		47,917.44 71	47,917.44 71	0.9184	0.8785	48,209.064 7

5.2 Energy by Land Use - NaturalGas Unmitigated

	NaturalGa s Use	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Land Use	kBTU/yr					lb/d	day							lb/d	day		
General Light Industry	36659.2	0.3953	3.5940	3.0190	0.0216		0.2732	0.2732		0.2732	0.2732		4,312.845 3	4,312.8453	0.0827	0.0791	4,339.0926
General Office Building	47770	0.5152	4.6833	3.9340	0.0281		0.3559	0.3559		0.3559	0.3559		5,620.003 0	5,620.0030	0.1077	0.1030	5,654.2054
Mobile Home Park	34180.6	0.3686	3.1500	1.3404	0.0201		0.2547	0.2547		0.2547	0.2547		4,021.252 5	4,021.2525	0.0771	0.0737	4,045.7252
Single Family Housing	187048	2.0172	17.2378	7.3352	0.1100		1.3937	1.3937		1.3937	1.3937		22,005.64 95	22,005.649 5	0.4218	0.4034	22,139.572 2
Strip Mall	17249.6	0.1860	1.6911	1.4206	0.0102		0.1285	0.1285		0.1285	0.1285		2,029.361 6	2,029.3616	0.0389	0.0372	2,041.7120
Apartments Low Rise	84390.8	0.9101	7.7772	3.3095	0.0496		0.6288	0.6288		0.6288	0.6288		9,928.335 2	9,928.3352	0.1903	0.1820	9,988.7573
Total		4.3924	38.1335	20.3586	0.2396		3.0348	3.0348		3.0348	3.0348		47,917.44 72	47,917.447 2	0.9184	0.8785	48,209.064 7

Mitigated

	NaturalGa s Use	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Land Use	kBTU/yr					lb/d	day							lb/d	day		
General Light Industry	36.6592	0.3953	3.5940	3.0190	0.0216		0.2732	0.2732		0.2732	0.2732		4,312.845 3	4,312.8453	0.0827	0.0791	4,339.0926
General Office Building	47.77	0.5152	4.6833	3.9340	0.0281		0.3559	0.3559		0.3559	0.3559		5,620.003 0	5,620.0030	0.1077	0.1030	5,654.2054
Mobile Home Park	34.1806	0.3686	3.1500	1.3404	0.0201		0.2547	0.2547		0.2547	0.2547		4,021.252 5	4,021.2525	0.0771	0.0737	4,045.7252
Single Family Housing	187.048	2.0172	17.2378	7.3352	0.1100		1.3937	1.3937		1.3937	1.3937		22,005.64 95	22,005.649 5	0.4218	0.4034	22,139.572 2
Strip Mall	17.2496	0.1860	1.6911	1.4206	0.0102		0.1285	0.1285		0.1285	0.1285		2,029.361 6	2,029.3616	0.0389	0.0372	2,041.7120
Apartments Low Rise	84.3908	0.9101	7.7772	3.3095	0.0496		0.6288	0.6288		0.6288	0.6288		9,928.335 2	9,928.3352	0.1903	0.1820	9,988.7573
Total		4.3924	38.1335	20.3586	0.2396		3.0348	3.0348		3.0348	3.0348		47,917.44 72	47,917.447 2	0.9184	0.8785	48,209.064 7

6.0 Area Detail

6.1 Mitigation Measures Area

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	lay							lb/	day		
Mitigated	8,814.5867	120.4743	10,903.26 63	4.1001		1,468.545 0	1,468.5450		1,468.5020	1,468.5020	153,716.52 96	65,289.58 94	219,006.1 190	142.7342	12.0910	225,751.73 58
Unmitigated	8,814.5867	120.4743	10,903.26 63	4.1001		1,468.545 0	1,468.5450		1,468.5020	1,468.5020	153,716.52 96	65,289.58 94	219,006.1 190	142.7342	12.0910	225,751.73 58

6.2 Area by SubCategory

Unmitigated

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
SubCategory					lb/c	lay							lb/	day		
Architectural Coating	87.5693					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Consumer Products	240.9825					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Hearth	8,470.7361	114.9252	10,435.03 72	4.0759		1,466.059 4	1,466.0594		1,466.0165	1,466.0165	153,716.52 96	64,466.47 06	218,183.0 002	141.8549	12.0910	224,910.15 12
Landscaping	15.2988	5.5491	468.2291	0.0241		2.4855	2.4855		2.4855	2.4855		823.1188	823.1188	0.8793		841.5846
Total	8,814.5867	120.4743	10,903.26 63	4.1001		1,468.545 0	1,468.5450		1,468.5020	1,468.5020	153,716.52 96	65,289.58 94	219,006.1 190	142.7342	12.0910	225,751.73 58

Mitigated

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
SubCategory					lb/d	lay							lb/	day		
Architectural Coating	87.5693					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Consumer Products	240.9825					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Hearth	8,470.7361	114.9252	10,435.03 72	4.0759		1,466.059 4	1,466.0594		1,466.0165	1,466.0165	153,716.52 96	64,466.47 06	218,183.0 002	141.8549	12.0910	224,910.15 12
Landscaping	15.2988	5.5491	468.2291	0.0241		2.4855	2.4855		2.4855	2.4855		823.1188	823.1188	0.8793		841.5846
Total	8,814.5867	120.4743	10,903.26 63	4.1001		1,468.545 0	1,468.5450		1,468.5020	1,468.5020	153,716.52 96	65,289.58 94	219,006.1 190	142.7342	12.0910	225,751.73 58

7.0 Water Detail

7.1 Mitigation Measures Water

8.0 Waste Detail

8.1 Mitigation Measures Waste

9.0 Operational Offroad

Equipment Type Number Hou	rs/Day Days/Year	Horse Power	Load Factor	Fuel Type
---------------------------	------------------	-------------	-------------	-----------

10.0 Vegetation

Capitola General Plan Update EIR

Date: 9/30/2013 4:39 PM

North Central Coast Air Basin, Winter

1.0 Project Characteristics

1.1 Land Usage

Land Uses	Size	Metric	Lot Acreage	Floor Surface Area	Population
Single Family Housing	1,935.00	Dwelling Unit	628.25	3,483,000.00	5534
Apartments Low Rise	2,857.00	Dwelling Unit	178.56	2,857,000.00	8171
Mobile Home Park	743.00	Dwelling Unit	93.60	891,600.00	2125
General Office Building	1,012.55	1000sqft	23.24	1,012,547.00	0
Strip Mall	2,528.55	1000sqft	58.05	2,528,552.00	0
General Light Industry	488.17	1000sqft	11.21	488,165.00	0

1.2 Other Project Characteristics

UrbanizationUrbanWind Speed (m/s)2.8Precipitation Freq (Days)53Climate Zone4Operational Year2014

Utility Company Pacific Gas & Electric Company

 CO2 Intensity
 641.35
 CH4 Intensity
 0.029
 N2O Intensity
 0.006

 (lb/MWhr)
 (lb/MWhr)
 (lb/MWhr)
 0.006

1.3 User Entered Comments & Non-Default Data

Project Characteristics -

Land Use - Baseline

Construction Phase - Operations Run Only

Off-road Equipment -

Table Name	Column Name	Default Value	New Value
tblConstructionPhase	NumDays	600.00	1.00
tblLandUse	LandUseSquareFeet	1,012,550.00	1,012,547.00
tblLandUse	LandUseSquareFeet	2,528,550.00	2,528,552.00
tblLandUse	LandUseSquareFeet	488,170.00	488,165.00
tblTripsAndVMT	WorkerTripNumber	18.00	10.00

2.0 Emissions Summary

2.2 Overall Operational

Unmitigated Operational

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/c	lay							lb/d	day		
Area	8,814.5867	120.4743	10,903.26 63	4.1001		1,468.545 0	1,468.5450		1,468.5020	1,468.5020	153,716.52 96	65,289.58 94	219,006.1 190	142.7342	12.0910	225,751.73 58
Energy	4.3924	38.1334	20.3586	0.2396		3.0348	3.0348		3.0348	3.0348		47,917.44 71	47,917.44 71	0.9184	0.8785	48,209.064 7
Mobile	2,245.2868	2,152.5090	10,564.03 34	10.7181	710.2872	26.4929	736.7801	189.7915	24.3077	214.0992		987,178.5 089	987,178.5 089	64.3970		988,530.84 49
Total	11,064.266 0	2,311.1168	21,487.65 84	15.0578	710.2872	1,498.072 6	2,208.3599	189.7915	1,495.8445	1,685.6360	153,716.52 96	1,100,385. 5454	1,254,102. 0750	208.0495	12.9695	1,262,491. 6454

Mitigated Operational

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/c	ay							lb/e	day		
Area	8,814.5867	120.4743	10,903.26 63	4.1001		1,468.545 0	1,468.5450		1,468.5020	1,468.5020	153,716.52 96	65,289.58 94	219,006.1 190	142.7342	12.0910	225,751.73 58
Energy	4.3924	38.1334	20.3586	0.2396		3.0348	3.0348		3.0348	3.0348		47,917.44 71	47,917.44 71	0.9184	0.8785	48,209.06 ² 7
Mobile	2,245.2868	2,152.5090	10,564.03 34	10.7181	710.2872	26.4929	736.7801	189.7915	24.3077	214.0992		987,178.5 089	987,178.5 089	64.3970		988,530.8 ⁴ 49
Total	11,064.266 0	2,311.1168	21,487.65 84	15.0578	710.2872	1,498.072 6	2,208.3599	189.7915	1,495.8445	1,685.6360	153,716.52 96	1,100,385. 5454	1,254,102. 0750	208.0495	12.9695	1,262,491. 6454

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio-CO2	Total CO2	CH4	N20	CO2e
Percent Reduction	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

3.0 Construction Detail

4.0 Operational Detail - Mobile

4.1 Mitigation Measures Mobile

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/c	lay							lb/d	day		
Mitigated	2,245.2868	2,152.5090	10,564.03 34	10.7181	710.2872	26.4929	736.7801	189.7915	24.3077	214.0992		987,178.5 089	987,178.5 089	64.3970		988,530.84 49
Unmitigated	2,245.2868	2,152.5090	10,564.03 34	10.7181	710.2872	26.4929	736.7801	189.7915	24.3077	214.0992		987,178.5 089	987,178.5 089	64.3970		988,530.84 49

4.2 Trip Summary Information

	Aver	age Daily Trip Ra	ate	Unmitigated	Mitigated
Land Use	Weekday	Saturday	Sunday	Annual VMT	Annual VMT
Apartments Low Rise	18,827.63	20,456.12	17341.99	54,299,101	54,299,101
Mobile Home Park	3,707.57	3,715.00	3239.48	10,491,510	10,491,510
General Light Industry	3,402.54	644.38	331.96	7,502,753	7,502,753
Single Family Housing	18,517.95	19,504.80	16969.95	53,117,213	53,117,213
Strip Mall	112,065.34	106,300.24	51658.28	158,026,134	158,026,134
General Office Building	11,148.18	2,399.74	992.30	20,187,580	20,187,580
Total	167,669.21	153,020.29	90,533.95	303,624,292	303,624,292

4.3 Trip Type Information

		Miles			Trip %			Trip Purpos	se %
Land Use	H-W or C-W	H-S or C-C	H-O or C-NW	H-W or C-	H-S or C-C	H-O or C-NW	Primary	Diverted	Pass-by
Apartments Low Rise	10.80	7.30	7.50	44.00	18.80	37.20	86	11	3
Mobile Home Park	10.80	7.30	7.50	44.00	18.80	37.20	86	11	3
General Light Industry	9.50	7.30	7.30	59.00	28.00	13.00	92	5	3
Single Family Housing	10.80	7.30	7.50	44.00	18.80	37.20	86	11	3
Strip Mall	9.50	7.30	7.30	16.60	64.40	19.00	45	40	15
General Office Building	9.50	7.30	7.30	33.00	48.00	19.00	77	19	4

4.4 Fleet Mix

LDA	LDT1	LDT2	MDV	LHD1	LHD2	MHD	HHD	OBUS	UBUS	MCY	SBUS	MH
0.464735	0.039298	0.210653	0.166464	0.052304	0.007425	0.015372	0.026867	0.002938	0.002238	0.008122	0.000854	0.002730

5.0 Energy Detail

Historical Energy Use: N

5.1 Mitigation Measures Energy

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	ay							lb/d	day		
NaturalGas Mitigated	4.3924	38.1334	20.3586	0.2396		3.0348	3.0348		3.0348	3.0348		47,917.44 71	47,917.44 71	0.9184	0.8785	48,209.064 7
NaturalGas Unmitigated	4.3924	38.1334	20.3586	0.2396		3.0348	3.0348		3.0348	3.0348		47,917.44 71	47,917.44 71	0.9184	0.8785	48,209.064 7

5.2 Energy by Land Use - NaturalGas

<u>Unmitigated</u>

	NaturalGa s Use	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Land Use	kBTU/yr					lb/d	day							lb/e	day		
General Light Industry	36659.2	0.3953	3.5940	3.0190	0.0216		0.2732	0.2732		0.2732	0.2732		4,312.845 3	4,312.8453	0.0827	0.0791	4,339.0926
General Office Building	47770	0.5152	4.6833	3.9340	0.0281		0.3559	0.3559		0.3559	0.3559		5,620.003 0	5,620.0030	0.1077	0.1030	5,654.2054
Mobile Home Park	34180.6	0.3686	3.1500	1.3404	0.0201		0.2547	0.2547		0.2547	0.2547		4,021.252 5	4,021.2525	0.0771	0.0737	4,045.7252
Single Family Housing	187048	2.0172	17.2378	7.3352	0.1100		1.3937	1.3937		1.3937	1.3937		22,005.64 95	22,005.649 5	0.4218	0.4034	22,139.572 2
Strip Mall	17249.6	0.1860	1.6911	1.4206	0.0102		0.1285	0.1285		0.1285	0.1285		2,029.361 6	2,029.3616	0.0389	0.0372	2,041.7120
Apartments Low Rise	84390.8	0.9101	7.7772	3.3095	0.0496		0.6288	0.6288		0.6288	0.6288		9,928.335 2	9,928.3352	0.1903	0.1820	9,988.7573
Total		4.3924	38.1335	20.3586	0.2396		3.0348	3.0348		3.0348	3.0348		47,917.44 72	47,917.447 2	0.9184	0.8785	48,209.064 7

Mitigated

	NaturalGa s Use	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Land Use	kBTU/yr					lb/d	day							lb/d	day		
General Light Industry	36.6592	0.3953	3.5940	3.0190	0.0216		0.2732	0.2732		0.2732	0.2732		4,312.845 3	4,312.8453	0.0827	0.0791	4,339.0926
General Office Building	47.77	0.5152	4.6833	3.9340	0.0281		0.3559	0.3559		0.3559	0.3559		5,620.003 0	5,620.0030	0.1077	0.1030	5,654.2054
Mobile Home Park	34.1806	0.3686	3.1500	1.3404	0.0201		0.2547	0.2547		0.2547	0.2547		4,021.252 5	4,021.2525	0.0771	0.0737	4,045.7252
Single Family Housing	187.048	2.0172	17.2378	7.3352	0.1100		1.3937	1.3937		1.3937	1.3937		22,005.64 95	22,005.649 5	0.4218	0.4034	22,139.572 2
Strip Mall	17.2496	0.1860	1.6911	1.4206	0.0102		0.1285	0.1285		0.1285	0.1285		2,029.361 6	2,029.3616	0.0389	0.0372	2,041.7120
Apartments Low Rise	84.3908	0.9101	7.7772	3.3095	0.0496		0.6288	0.6288		0.6288	0.6288		9,928.335 2	9,928.3352	0.1903	0.1820	9,988.7573
Total		4.3924	38.1335	20.3586	0.2396		3.0348	3.0348		3.0348	3.0348		47,917.44 72	47,917.447 2	0.9184	0.8785	48,209.064 7

6.0 Area Detail

6.1 Mitigation Measures Area

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	ay							lb/	day		
Mitigated	8,814.5867	120.4743	10,903.26 63	4.1001		1,468.545 0	1,468.5450		1,468.5020	1,468.5020	153,716.52 96	65,289.58 94	219,006.1 190	142.7342	12.0910	225,751.73 58
Unmitigated	8,814.5867	120.4743	10,903.26 63	4.1001		1,468.545 0	1,468.5450		1,468.5020	1,468.5020	153,716.52 96	65,289.58 94	219,006.1 190	142.7342	12.0910	225,751.73 58

6.2 Area by SubCategory

Unmitigated

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
SubCategory					lb/c	lay							lb/	day		
Architectural Coating	87.5693					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Consumer Products	240.9825					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Hearth	8,470.7361	114.9252	10,435.03 72	4.0759		1,466.059 4	1,466.0594		1,466.0165	1,466.0165	153,716.52 96	64,466.47 06	218,183.0 002	141.8549	12.0910	224,910.15 12
Landscaping	15.2988	5.5491	468.2291	0.0241		2.4855	2.4855		2.4855	2.4855		823.1188	823.1188	0.8793		841.5846
Total	8,814.5867	120.4743	10,903.26 63	4.1001		1,468.545 0	1,468.5450		1,468.5020	1,468.5020	153,716.52 96	65,289.58 94	219,006.1 190	142.7342	12.0910	225,751.73 58

Mitigated

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
SubCategory					lb/d	lay							lb/	day		
Architectural Coating	87.5693					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Consumer Products	240.9825					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Hearth	8,470.7361	114.9252	10,435.03 72	4.0759		1,466.059 4	1,466.0594		1,466.0165	1,466.0165	153,716.52 96	64,466.47 06	218,183.0 002	141.8549	12.0910	224,910.15 12
Landscaping	15.2988	5.5491	468.2291	0.0241		2.4855	2.4855		2.4855	2.4855		823.1188	823.1188	0.8793		841.5846
Total	8,814.5867	120.4743	10,903.26 63	4.1001		1,468.545 0	1,468.5450		1,468.5020	1,468.5020	153,716.52 96	65,289.58 94	219,006.1 190	142.7342	12.0910	225,751.73 58

7.0 Water Detail

7.1 Mitigation Measures Water

8.0 Waste Detail

8.1 Mitigation Measures Waste

9.0 Operational Offroad

Equipment Type Number Hou	rs/Day Days/Year	Horse Power	Load Factor	Fuel Type
---------------------------	------------------	-------------	-------------	-----------

10.0 Vegetation

Capitola General Plan Update EIR

Date: 9/30/2013 4:48 PM

North Central Coast Air Basin, Annual

1.0 Project Characteristics

1.1 Land Usage

Land Uses	Size	Metric	Lot Acreage	Floor Surface Area	Population
Single Family Housing	1,944.00	Dwelling Unit	631.17	3,499,200.00	5560
Apartments Low Rise	2,911.00	Dwelling Unit	181.94	2,911,000.00	8325
Mobile Home Park	743.00	Dwelling Unit	93.60	891,600.00	2125
General Office Building	1,154.33	1000sqft	26.50	1,154,327.00	0
Strip Mall	2,882.57	1000sqft	66.17	2,882,572.00	O
General Light Industry	556.46	1000sqft	12.77	556,459.00	0

1.2 Other Project Characteristics

UrbanizationUrbanWind Speed (m/s)2.8Precipitation Freq (Days)53Climate Zone4Operational Year2035

Utility Company Pacific Gas & Electric Company

 CO2 Intensity
 641.35
 CH4 Intensity
 0.029
 N2O Intensity
 0.006

 (Ib/MWhr)
 (Ib/MWhr)
 (Ib/MWhr)
 (Ib/MWhr)

1.3 User Entered Comments & Non-Default Data

Project Characteristics -

Land Use - 2035 Year

Construction Phase - Operations Run Only

Off-road Equipment -

Table Name	Column Name	Default Value	New Value
tblConstructionPhase	NumDays	6,000.00	1.00
tblLandUse	LandUseSquareFeet	1,154,330.00	1,154,327.00
tblLandUse	LandUseSquareFeet	2,882,570.00	2,882,572.00
tblProjectCharacteristics	OperationalYear	2014	2035

2.0 Emissions Summary

2.2 Overall Operational

Unmitigated Operational

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					tons	s/yr							MT	Г/уг		
Area	415.6969	5.2438	474.1679	0.1712		61.0233	61.0233		61.0215	61.0215	5,782.4972	2,493.074 1	8,275.571 3	5.4011	0.4548	8,529.9945
Energy	0.8345	7.2555	3.9470	0.0455		0.5766	0.5766		0.5766	0.5766	0.0000	34,318.65 67	34,318.65 67	1.3367	0.3952	34,469.240 1
Mobile	151.6039	118.7378	643.6447	1.9571	123.8884	2.5493	126.4377	33.1989	2.3536	35.5526	0.0000	127,792.6 775	127,792.6 775	3.9360	0.0000	127,875.33 32
Waste						0.0000	0.0000		0.0000	0.0000	1,810.1679	0.0000	1,810.167 9	106.9779	0.0000	4,056.7028
Water						0.0000	0.0000		0.0000	0.0000	289.3661	1,931.153 0	2,220.519 0	29.8080	0.7198	3,069.6359
Total	568.1352	131.2371	1,121.759 6	2.1738	123.8884	64.1491	188.0375	33.1989	63.9517	97.1506	7,882.0311	166,535.5 612	174,417.5 923	147.4596	1.5699	178,000.90 65

Mitigated Operational

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					tons	s/yr							МТ	√yr		
Area	415.6969	5.2438	474.1679	0.1712		61.0233	61.0233		61.0215	61.0215	5,782.4972	2,493.074 1	8,275.571 3	5.4011	0.4548	8,529.9945
Energy	0.8345	7.2555	3.9470	0.0455		0.5766	0.5766		0.5766	0.5766	0.0000	34,318.65 67	34,318.65 67	1.3367	0.3952	34,469.240 1
Mobile	151.6039	118.7378	643.6447	1.9571	123.8884	2.5493	126.4377	33.1989	2.3536	35.5526	0.0000	127,792.6 775	127,792.6 775	3.9360	0.0000	127,875.33 32
Waste						0.0000	0.0000		0.0000	0.0000	1,810.1679	0.0000	1,810.167 9	106.9779	0.0000	4,056.7028
Water						0.0000	0.0000		0.0000	0.0000	289.3661	1,931.153 0	2,220.519 0	29.8026	0.7187	3,069.1743
Total	568.1352	131.2371	1,121.759 6	2.1738	123.8884	64.1491	188.0375	33.1989	63.9517	97.1506	7,882.0311	166,535.5 612	174,417.5 923	147.4542	1.5688	178,000.44 49

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio-CO2	Total CO2	CH4	N20	CO2e
Percent Reduction	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	3.6756e- 003	0.0720	2.5935e- 004

3.0 Construction Detail

4.0 Operational Detail - Mobile

4.1 Mitigation Measures Mobile

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					tons	s/yr							МТ	-/yr		
Mitigated	151.6039	118.7378	643.6447	1.9571	123.8884	2.5493	126.4377	33.1989	2.3536	35.5526	0.0000	127,792.6 775	127,792.6 775	3.9360	0.0000	127,875.33 32
Unmitigated	151.6039	118.7378	643.6447	1.9571	123.8884	2.5493	126.4377	33.1989	2.3536	35.5526	0.0000	127,792.6 775	127,792.6 775	3.9360	0.0000	127,875.33 32

4.2 Trip Summary Information

	Aver	age Daily Trip Ra	ate	Unmitigated	Mitigated
Land Use	Weekday	Saturday	Sunday	Annual VMT	Annual VMT
Apartments Low Rise	19,183.49	20,842.76	17669.77	55,325,406	55,325,406
Mobile Home Park	3,707.57	3,715.00	3239.48	10,491,510	10,491,510
General Light Industry	3,878.52	734.53	378.39	8,552,297	8,552,297
Single Family Housing	18,604.08	19,595.52	17048.88	53,364,269	53,364,269
Strip Mall	127,755.59	121,183.33	58890.95	180,151,355	180,151,355
General Office Building	12,709.14	2,735.75	1131.24	23,014,240	23,014,240
Total	185,838.39	168,806.89	98,358.71	330,899,077	330,899,077

4.3 Trip Type Information

		Miles			Trip %			Trip Purpos	se %
Land Use	H-W or C-W	H-S or C-C	H-O or C-NW	H-W or C-	H-S or C-C	H-O or C-NW	Primary	Diverted	Pass-by
Apartments Low Rise	10.80	7.30	7.50	44.00	18.80	37.20	86	11	3
Mobile Home Park	10.80	7.30	7.50	44.00	18.80	37.20	86	11	3
General Light Industry	9.50	7.30	7.30	59.00	28.00	13.00	92	5	3
Single Family Housing	10.80	7.30	7.50	44.00	18.80	37.20	86	11	3
Strip Mall	9.50	7.30	7.30	16.60	64.40	19.00	45	40	15
General Office Building	9.50	7.30	7.30	33.00	48.00	19.00	77	19	4

4.4 Fleet Mix

LDA	LDT1	LDT2	MDV	LHD1	LHD2	MHD	HHD	OBUS	UBUS	MCY	SBUS	MH
0.463801	0.038716	0.206906	0.161453	0.051141	0.007200	0.017453	0.036189	0.003411	0.002060	0.008397	0.000655	0.002618

5.0 Energy Detail

Historical Energy Use: N

5.1 Mitigation Measures Energy

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					tons	s/yr							МТ	-/yr		
Electricity Mitigated						0.0000	0.0000		0.0000	0.0000	0.0000	26,060.15 24	26,060.15 24	1.1784	0.2438	26,160.475 9
Electricity Unmitigated						0.0000	0.0000		0.0000	0.0000	0.0000	26,060.15 24	26,060.15 24	1.1784	0.2438	26,160.475 9
NaturalGas Mitigated	0.8345	7.2555	3.9470	0.0455		0.5766	0.5766		0.5766	0.5766	0.0000	8,258.504 3	8,258.504 3	0.1583	0.1514	8,308.7642
NaturalGas Unmitigated	0.8345	7.2555	3.9470	0.0455		0.5766	0.5766		0.5766	0.5766	0.0000	8,258.504 3	8,258.504 3	0.1583	0.1514	8,308.7642

5.2 Energy by Land Use - NaturalGas

<u>Unmitigated</u>

	NaturalGa s Use	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Land Use	kBTU/yr					ton	s/yr							M٦	Г/уг		
General Light Industry	1.52525e+ 007	0.0822	0.7477	0.6281	4.4900e- 003		0.0568	0.0568		0.0568	0.0568	0.0000	813.9337	813.9337	0.0156	0.0149	818.8872
General Office Building	1.98775e+ 007	0.1072	0.9744	0.8185	5.8500e- 003		0.0741	0.0741		0.0741	0.0741	0.0000	1,060.739 7	1,060.7397	0.0203	0.0195	1,067.1952
Mobile Home Park	1.24759e+ 007	0.0673	0.5749	0.2446	3.6700e- 003		0.0465	0.0465		0.0465	0.0465	0.0000	665.7635	665.7635	0.0128	0.0122	669.8152
Single Family Housing	6.85901e+ 007	0.3699	3.1605	1.3449	0.0202		0.2555	0.2555		0.2555	0.2555	0.0000	3,660.227 6	3,660.2276	0.0702	0.0671	3,682.5031
Strip Mall	7.1776e+0 06	0.0387	0.3518	0.2956	2.1100e- 003		0.0267	0.0267		0.0267	0.0267	0.0000	383.0243	383.0243	7.3400e- 003	7.0200e- 003	385.3553
Apartments Low Rise	3.13849e+ 007	0.1692	1.4462	0.6154	9.2300e- 003		0.1169	0.1169		0.1169	0.1169	0.0000	1,674.815 6	1,674.8156	0.0321	0.0307	1,685.0083
Total		0.8345	7.2555	3.9470	0.0455		0.5765	0.5765		0.5765	0.5765	0.0000	8,258.504 3	8,258.5043	0.1583	0.1514	8,308.7642

Mitigated

	NaturalGa s Use	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Land Use	kBTU/yr					ton	s/yr							МТ	-/yr		
General Light Industry	1.52525e+ 007	0.0822	0.7477	0.6281	4.4900e- 003		0.0568	0.0568		0.0568	0.0568	0.0000	813.9337	813.9337	0.0156	0.0149	818.8872
General Office Building	1.98775e+ 007	0.1072	0.9744	0.8185	5.8500e- 003		0.0741	0.0741		0.0741	0.0741	0.0000	1,060.739 7	1,060.7397	0.0203	0.0195	1,067.1952
Mobile Home Park	1.24759e+ 007	0.0673	0.5749	0.2446	3.6700e- 003		0.0465	0.0465		0.0465	0.0465	0.0000	665.7635	665.7635	0.0128	0.0122	669.8152
Single Family Housing	6.85901e+ 007	0.3699	3.1605	1.3449	0.0202		0.2555	0.2555		0.2555	0.2555	0.0000	3,660.227 6	3,660.2276	0.0702	0.0671	3,682.5031
Strip Mall	7.1776e+0 06	0.0387	0.3518	0.2956	2.1100e- 003		0.0267	0.0267		0.0267	0.0267	0.0000	383.0243	383.0243	7.3400e- 003	7.0200e- 003	385.3553
Apartments Low Rise	3.13849e+ 007	0.1692	1.4462	0.6154	9.2300e- 003		0.1169	0.1169		0.1169	0.1169	0.0000	1,674.815 6	1,674.8156	0.0321	0.0307	1,685.0083
Total		0.8345	7.2555	3.9470	0.0455		0.5765	0.5765		0.5765	0.5765	0.0000	8,258.504 3	8,258.5043	0.1583	0.1514	8,308.7642

5.3 Energy by Land Use - Electricity <u>Unmitigated</u>

	Electricity Use	Total CO2	CH4	N2O	CO2e
Land Use	kWh/yr		MΤ	Γ/yr	
Apartments Low Rise	1.07175e+ 007	3,117.8314	0.1410	0.0292	3,129.8341
General Light Industry	5.02482e+ 006	1,461.7791	0.0661	0.0137	1,467.4065
General Office Building	2.27518e+ 007	6,618.7552	0.2993	0.0619	6,644.2354
Mobile Home Park	3.63991e+ 006	1,058.8923	0.0479	9.9100e- 003	1,062.9687
Single Family Housing	1.37498e+ 007	3,999.9731	0.1809	0.0374	4,015.3718
Strip Mall	3.36973e+ 007	9,802.9213	0.4433	0.0917	9,840.6595
Total		26,060.152 4	1.1784	0.2438	26,160.475 9

Mitigated

	Electricity Use	Total CO2	CH4	N2O	CO2e
Land Use	kWh/yr		MT	Г/уг	
Apartments Low Rise	1.07175e+ 007	3,117.8314	0.1410	0.0292	3,129.8341
General Light Industry	5.02482e+ 006	1,461.7791	0.0661	0.0137	1,467.4065
General Office Building	2.27518e+ 007	6,618.7552	0.2993	0.0619	6,644.2354
Mobile Home Park	3.63991e+ 006	1,058.8923	0.0479	9.9100e- 003	1,062.9687
Single Family Housing	1.37498e+ 007	3,999.9731	0.1809	0.0374	4,015.3718
Strip Mall	3.36973e+ 007	9,802.9213	0.4433	0.0917	9,840.6595
Total		26,060.152 4	1.1784	0.2438	26,160.475 9

6.0 Area Detail

6.1 Mitigation Measures Area

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					tons	s/yr							МТ	/yr		
Mitigated	415.6969	5.2438	474.1679	0.1712		61.0233	61.0233		61.0215	61.0215	5,782.4972	2,493.074 1	8,275.571 3	5.4011	0.4548	8,529.9945
Unmitigated	415.6969	5.2438	474.1679	0.1712		61.0233	61.0233		61.0215	61.0215	5,782.4972	2,493.074 1	8,275.571 3	5.4011	0.4548	8,529.9945

6.2 Area by SubCategory

Unmitigated

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
SubCategory					tons	s/yr							MT	Г/уг		
Architectural Coating	16.7449					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Consumer Products	46.4565					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Hearth	351.2532	4.7656	432.7062	0.1690		60.7926	60.7926		60.7908	60.7908	5,782.4972	2,425.095 0	8,207.592 2	5.3363	0.4548	8,460.6537
Landscaping	1.2423	0.4782	41.4617	2.2000e- 003		0.2307	0.2307		0.2307	0.2307	0.0000	67.9791	67.9791	0.0649	0.0000	69.3408
Total	415.6969	5.2438	474.1679	0.1712		61.0233	61.0233		61.0215	61.0215	5,782.4972	2,493.074 1	8,275.571 3	5.4011	0.4548	8,529.9945

Mitigated

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
SubCategory					tons	s/yr							MT	Γ/yr		
Architectural Coating	16.7449					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Consumer Products	46.4565					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Hearth	351.2532	4.7656	432.7062	0.1690		60.7926	60.7926		60.7908	60.7908	5,782.4972	2,425.095 0	8,207.592 2	5.3363	0.4548	8,460.6537
Landscaping	1.2423	0.4782	41.4617	2.2000e- 003		0.2307	0.2307		0.2307	0.2307	0.0000	67.9791	67.9791	0.0649	0.0000	69.3408
Total	415.6969	5.2438	474.1679	0.1712		61.0233	61.0233		61.0215	61.0215	5,782.4972	2,493.074 1	8,275.571 3	5.4011	0.4548	8,529.9945

7.1 Mitigation Measures Water

	Total CO2	CH4	N2O	CO2e
Category		MT	/yr	
Mitigated	2,220.5190	29.8026	0.7187	3,069.1743
Unmitigated	2,220.5190	29.8080	0.7198	3,069.6359

7.2 Water by Land Use Unmitigated

	Indoor/Out door Use	Total CO2	CH4	N2O	CO2e
Land Use	Mgal		M	Γ/yr	
Apartments Low Rise	189.663 / 119.57	480.4701	6.1992	0.1499	657.1095
General Light Industry	128.681 / 0	243.3848	4.2022	0.1009	362.9118
	205.163 / 125.745	516.0737	6.7056	0.1621	707.1347
Mobile Home Park	48.4094 / 30.519	122.6346	1.5823	0.0383	167.7198
	126.659 / 79.8505	320.8636	4.1399	0.1001	438.8255
Strip Mall	213.519 / 130.867	537.0922	6.9788	0.1687	735.9347
Total		2,220.5190	29.8080	0.7198	3,069.6359

Mitigated

	Indoor/Out door Use	Total CO2	CH4	N2O	CO2e
Land Use	Mgal		M	Г/уг	
Apartments Low Rise	189.663 / 119.57	480.4701	6.1981	0.1496	657.0135
General Light Industry	128.681 / 0	243.3848	4.2015	0.1007	362.8467
General Office Building	205.163 / 125.745	516.0737	6.7044	0.1618	707.0309
Mobile Home Park	30.519		1.5820	0.0382	167.6953
	126.659 / 79.8505		4.1391	0.0999	438.7613
Strip Mall	213.519 / 130.867	537.0922	6.9775	0.1684	735.8266
Total		2,220.5190	29.8026	0.7187	3,069.1743

8.0 Waste Detail

8.1 Mitigation Measures Waste

Category/Year

	Total CO2	CH4	N2O	CO2e
		MT	/yr	
Unmitigated	1,810.1679	106.9779	0.0000	4,056.7028
Mitigated	1,810.1679	106.9779	0.0000	4,056.7028

8.2 Waste by Land Use

<u>Unmitigated</u>

	Waste Disposed	Total CO2	CH4	N2O	CO2e							
Land Use	tons	MT/yr										
Apartments Low Rise	1339.06	271.8171	16.0639	0.0000	609.1596							
General Light Industry	690.01	140.0658	8.2777	0.0000	313.8965							
General Office Building	1073.53	217.9169	12.8785	0.0000	488.3658							
Mobile Home Park	341.78	69.3783	4.1001	0.0000	155.4811							
Single Family Housing	2446.4	496.5971	29.3481	0.0000	1,112.9061							
Strip Mall	3026.7	614.3928	36.3096	0.0000	1,376.8937							
Total		1,810.1679	106.9779	0.0000	4,056.7028							

Mitigated

	Waste Disposed	Total CO2	CH4	N2O	CO2e						
Land Use	tons	MT/yr									
Apartments Low Rise	1339.06	271.8171	16.0639	0.0000	609.1596						
General Light Industry	690.01	140.0658	8.2777	0.0000	313.8965						
General Office Building	1073.53	217.9169	12.8785	0.0000	488.3658						
Mobile Home Park	341.78	69.3783	4.1001	0.0000	155.4811						
Single Family Housing	2446.4	496.5971	29.3481	0.0000	1,112.9061						
Strip Mall	3026.7	614.3928	36.3096	0.0000	1,376.8937						
Total		1,810.1679	106.9779	0.0000	4,056.7028						

9.0 Operational Offroad

Equipment Type	Number	Hours/Day	Days/Year	Horse Power	Load Factor	Fuel Type

10.0 Vegetation

Capitola General Plan Update EIR North Central Coast Air Basin, Summer

Date: 9/30/2013 4:50 PM

1.0 Project Characteristics

1.1 Land Usage

Land Uses	Size	Metric	Lot Acreage	Floor Surface Area	Population
Single Family Housing	1,944.00	Dwelling Unit	631.17	3,499,200.00	5560
Apartments Low Rise	2,911.00	Dwelling Unit	181.94	2,911,000.00	8325
Mobile Home Park	743.00	Dwelling Unit	93.60	891,600.00	2125
General Office Building	1,154.33	1000sqft	26.50	1,154,327.00	0
Strip Mall	2,882.57	1000sqft	66.17	2,882,572.00	O
General Light Industry	556.46	1000sqft	12.77	556,459.00	0

1.2 Other Project Characteristics

UrbanizationUrbanWind Speed (m/s)2.8Precipitation Freq (Days)53Climate Zone4Operational Year2035

Utility Company Pacific Gas & Electric Company

 CO2 Intensity
 641.35
 CH4 Intensity
 0.029
 N2O Intensity
 0.006

 (lb/MWhr)
 (lb/MWhr)
 (lb/MWhr)
 0.006

1.3 User Entered Comments & Non-Default Data

Project Characteristics -

Land Use - 2035 Year

Construction Phase - Operations Run Only

Off-road Equipment -

Table Name	Column Name	Default Value	New Value
tblConstructionPhase	NumDays	6,000.00	1.00
tblLandUse	LandUseSquareFeet	1,154,330.00	1,154,327.00
tblLandUse	LandUseSquareFeet	2,882,570.00	2,882,572.00
tblProjectCharacteristics	OperationalYear	2014	2035

2.0 Emissions Summary

2.2 Overall Operational

Unmitigated Operational

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	lb/day										lb/	day				
Area	8,927.2630	121.5471	11,014.49 50	4.1467		1,485.309 1	1,485.3091		1,485.2656	1,485.2656	155,466.14 86	66,032.83 63	221,498.9 850	144.2637	12.2286	228,319.38 39
Energy	4.5725	39.7560	21.6274	0.2494		3.1592	3.1592		3.1592	3.1592		49,881.87 78	49,881.87 78	0.9561	0.9145	50,185.450 5
Mobile	867.4173	675.0694	3,518.573 8	12.4027	776.2857	15.4602	791.7459	207.4819	14.2737	221.7557		889,740.0 767	889,740.0 767	26.3378		890,293.17 05
Total	9,799.2529	836.3725	14,554.69 62	16.7989	776.2857	1,503.928 5	2,280.2141	207.4819	1,502.6986	1,710.1805	155,466.14 86	1,005,654. 7908	1,161,120. 9395	171.5576	13.1431	1,168,798. 0049

Mitigated Operational

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	lb/day										lb/e	day				
Area	8,927.2630	121.5471	11,014.49 50	4.1467		1,485.309 1	1,485.3091		1,485.2656	1,485.2656	155,466.14 86	66,032.83 63	221,498.9 850	144.2637	12.2286	228,319.38 39
Energy	4.5725	39.7560	21.6274	0.2494		3.1592	3.1592		3.1592	3.1592		49,881.87 78	49,881.87 78	0.9561	0.9145	50,185.450 5
Mobile	867.4173	675.0694	3,518.573 8	12.4027	776.2857	15.4602	791.7459	207.4819	14.2737	221.7557		889,740.0 767	889,740.0 767	26.3378		890,293.17 05
Total	9,799.2529	836.3725	14,554.69 62	16.7989	776.2857	1,503.928 5	2,280.2141	207.4819	1,502.6986	1,710.1805	155,466.14 86	1,005,654. 7908	1,161,120. 9395	171.5576	13.1431	1,168,798. 0049

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio-CO2	Total CO2	CH4	N20	CO2e
Percent Reduction	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

3.0 Construction Detail

4.0 Operational Detail - Mobile

4.1 Mitigation Measures Mobile

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	lay							lb/d	day		
Mitigated	867.4173	675.0694	3,518.573 8	12.4027	776.2857	15.4602	791.7459	207.4819	14.2737	221.7557		889,740.0 767	889,740.0 767	26.3378		890,293.17 05
Unmitigated	867.4173	675.0694	3,518.573 8	12.4027	776.2857	15.4602	791.7459	207.4819	14.2737	221.7557		889,740.0 767	889,740.0 767	26.3378		890,293.17 05

4.2 Trip Summary Information

	Avera	age Daily Trip Ra	ate	Unmitigated	Mitigated
Land Use	Weekday	Saturday	Sunday	Annual VMT	Annual VMT
Apartments Low Rise	19,183.49	20,842.76	17669.77	55,325,406	55,325,406
Mobile Home Park	3,707.57	3,715.00	3239.48	10,491,510	10,491,510
General Light Industry	3,878.52	734.53	378.39	8,552,297	8,552,297
Single Family Housing	18,604.08	19,595.52	17048.88	53,364,269	53,364,269
Strip Mall	127,755.59	121,183.33	58890.95	180,151,355	180,151,355
General Office Building	12,709.14	2,735.75	1131.24	23,014,240	23,014,240
Total	185,838.39	168,806.89	98,358.71	330,899,077	330,899,077

4.3 Trip Type Information

		Miles			Trip %			Trip Purpos	e %
Land Use	H-W or C-W	H-S or C-C	H-O or C-NW	H-W or C-	H-S or C-C	H-O or C-NW	Primary	Diverted	Pass-by
Apartments Low Rise	10.80	7.30	7.50	44.00	18.80	37.20	86	11	3
Mobile Home Park	10.80	7.30	7.50	44.00	18.80	37.20	86	11	3
General Light Industry	9.50	7.30	7.30	59.00	28.00	13.00	92	5	3
Single Family Housing	10.80	7.30	7.50	44.00	18.80	37.20	86	11	3
Strip Mall	9.50	7.30	7.30	16.60	64.40	19.00	45	40	15
General Office Building	9.50	7.30	7.30	33.00	48.00	19.00	77	19	4

4.4 Fleet Mix

	LDA	LDT1	LDT2	MDV	LHD1	LHD2	MHD	HHD	OBUS	UBUS	MCY	SBUS	MH
(0.463801	0.038716	0.206906	0.161453	0.051141	0.007200	0.017453	0.036189	0.003411	0.002060	0.008397	0.000655	0.002618

5.0 Energy Detail

Historical Energy Use: N

5.1 Mitigation Measures Energy

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	ay							lb/d	day		
NaturalGas Mitigated	4.5725	39.7560	21.6274	0.2494		3.1592	3.1592		3.1592	3.1592		49,881.87 78	49,881.87 78	0.9561	0.9145	50,185.450 5
NaturalGas Unmitigated	4.5725	39.7560	21.6274	0.2494		3.1592	3.1592		3.1592	3.1592		49,881.87 78	49,881.87 78	0.9561	0.9145	50,185.450 5

5.2 Energy by Land Use - NaturalGas

Unmitigated

	NaturalGa s Use	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Land Use	kBTU/yr					lb/d	day							lb/d	day		
General Light Industry	41787.8	0.4507	4.0968	3.4414	0.0246		0.3114	0.3114		0.3114	0.3114		4,916.209 9	4,916.2099	0.0942	0.0901	4,946.1291
General Office Building	54458.9	0.5873	5.3391	4.4849	0.0320		0.4058	0.4058		0.4058	0.4058		6,406.933 4	6,406.9334	0.1228	0.1175	6,445.9250
Mobile Home Park	34180.6	0.3686	3.1500	1.3404	0.0201		0.2547	0.2547		0.2547	0.2547		4,021.252 5	4,021.2525	0.0771	0.0737	4,045.7252
Single Family Housing	187918	2.0266	17.3179	7.3693	0.1105		1.4002	1.4002		1.4002	1.4002		22,108.00 14	22,108.001 4	0.4237	0.4053	22,242.547 0
Strip Mall	19664.7	0.2121	1.9279	1.6194	0.0116		0.1465	0.1465		0.1465	0.1465		2,313.490 5	2,313.4905	0.0443	0.0424	2,327.5700
Apartments Low Rise	85985.9	0.9273	7.9242	3.3720	0.0506		0.6407	0.6407		0.6407	0.6407		10,115.99 01	10,115.990 1	0.1939	0.1855	10,177.554 3
Total		4.5725	39.7560	21.6274	0.2494		3.1592	3.1592		3.1592	3.1592		49,881.87 78	49,881.877 8	0.9561	0.9145	50,185.450 6

Mitigated

	NaturalGa s Use	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Land Use	kBTU/yr					lb/d	day							lb/e	day		
General Light Industry	41.7878	0.4507	4.0968	3.4414	0.0246		0.3114	0.3114		0.3114	0.3114		4,916.209 9	4,916.2099	0.0942	0.0901	4,946.1291
General Office Building	54.4589	0.5873	5.3391	4.4849	0.0320		0.4058	0.4058		0.4058	0.4058		6,406.933 4	6,406.9334	0.1228	0.1175	6,445.9250
Mobile Home Park	34.1806	0.3686	3.1500	1.3404	0.0201		0.2547	0.2547		0.2547	0.2547		4,021.252 5	4,021.2525	0.0771	0.0737	4,045.7252
Single Family Housing	187.918	2.0266	17.3179	7.3693	0.1105		1.4002	1.4002		1.4002	1.4002		22,108.00 14	22,108.001 4	0.4237	0.4053	22,242.547 0
Strip Mall	19.6647	0.2121	1.9279	1.6194	0.0116		0.1465	0.1465		0.1465	0.1465		2,313.490 5	2,313.4905	0.0443	0.0424	2,327.5700
Apartments Low Rise	85.9859	0.9273	7.9242	3.3720	0.0506		0.6407	0.6407		0.6407	0.6407		10,115.99 01	10,115.990 1	0.1939	0.1855	10,177.554 3
Total		4.5725	39.7560	21.6274	0.2494		3.1592	3.1592		3.1592	3.1592		49,881.87 78	49,881.877 8	0.9561	0.9145	50,185.450 6

6.0 Area Detail

6.1 Mitigation Measures Area

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	ay							lb/d	day		
Mitigated	8,927.2630	121.5471	11,014.49 50	4.1467		1,485.309 1	1,485.3091		1,485.2656	1,485.2656	155,466.14 86	66,032.83 63	221,498.9 850	144.2637	12.2286	228,319.38 39
Unmitigated	8,927.2630	121.5471	11,014.49 50	4.1467		1,485.309 1	1,485.3091		1,485.2656	1,485.2656	155,466.14 86	66,032.83 63	221,498.9 850	144.2637	12.2286	228,319.38 39

6.2 Area by SubCategory

Unmitigated

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
SubCategory					lb/c	lay							lb/	day		
Architectural Coating	91.7526					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Consumer Products	254.5564					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Hearth	8,567.1510	116.2333	10,553.81 00	4.1223		1,482.746 3	1,482.7463		1,482.7028	1,482.7028	155,466.14 86	65,200.23 53	220,666.3 839	143.4695	12.2286	227,470.10 42
Landscaping	13.8030	5.3138	460.6851	0.0244		2.5628	2.5628		2.5628	2.5628		832.6010	832.6010	0.7942		849.2797
Total	8,927.2630	121.5471	11,014.49 50	4.1467		1,485.309 1	1,485.3091		1,485.2656	1,485.2656	155,466.14 86	66,032.83 63	221,498.9 850	144.2637	12.2286	228,319.38 39

Mitigated

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
SubCategory					lb/d	lay							lb/	day		
Architectural Coating	91.7526					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Consumer Products	254.5564					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Hearth	8,567.1510	116.2333	10,553.81 00	4.1223		1,482.746 3	1,482.7463		1,482.7028	1,482.7028	155,466.14 86	65,200.23 53	220,666.3 839	143.4695	12.2286	227,470.10 42
Landscaping	13.8030	5.3138	460.6851	0.0244		2.5628	2.5628		2.5628	2.5628		832.6010	832.6010	0.7942		849.2797
Total	8,927.2630	121.5471	11,014.49 50	4.1467		1,485.309 1	1,485.3091		1,485.2656	1,485.2656	155,466.14 86	66,032.83 63	221,498.9 850	144.2637	12.2286	228,319.38 39

7.0 Water Detail

7.1 Mitigation Measures Water

8.0 Waste Detail

8.1 Mitigation Measures Waste

9.0 Operational Offroad

Equipment Type Number Hours/Day	Days/Year	Horse Power	Load Factor	Fuel Type
---------------------------------	-----------	-------------	-------------	-----------

10.0 Vegetation

Capitola General Plan Update EIR

Date: 9/30/2013 4:52 PM

North Central Coast Air Basin, Winter

1.0 Project Characteristics

1.1 Land Usage

Land Uses	Size	Metric	Lot Acreage	Floor Surface Area	Population
Single Family Housing	1,944.00	Dwelling Unit	631.17	3,499,200.00	5560
Apartments Low Rise	2,911.00	Dwelling Unit	181.94	2,911,000.00	8325
Mobile Home Park	743.00	Dwelling Unit	93.60	891,600.00	2125
General Office Building	1,154.33	1000sqft	26.50	1,154,327.00	0
Strip Mall	2,882.57	1000sqft	66.17	2,882,572.00	0
General Light Industry	556.46	1000sqft	12.77	556,459.00	0

1.2 Other Project Characteristics

UrbanizationUrbanWind Speed (m/s)2.8Precipitation Freq (Days)53Climate Zone4Operational Year2035

Utility Company Pacific Gas & Electric Company

 CO2 Intensity
 641.35
 CH4 Intensity
 0.029
 N2O Intensity
 0.006

 (lb/MWhr)
 (lb/MWhr)
 (lb/MWhr)
 (lb/MWhr)

1.3 User Entered Comments & Non-Default Data

Project Characteristics -

Land Use - 2035 Year

Construction Phase - Operations Run Only

Off-road Equipment -

Table Name	Column Name	Default Value	New Value
tblConstructionPhase	NumDays	6,000.00	1.00
tblLandUse	LandUseSquareFeet	1,154,330.00	1,154,327.00
tblLandUse	LandUseSquareFeet	2,882,570.00	2,882,572.00
tblProjectCharacteristics	OperationalYear	2014	2035

2.0 Emissions Summary

2.2 Overall Operational

Unmitigated Operational

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/c	lay							lb/	day		
Area	8,927.2630	121.5471	11,014.49 50	4.1467		1,485.309 1	1,485.3091		1,485.2656	1,485.2656	155,466.14 86	66,032.83 63	221,498.9 850	144.2637	12.2286	228,319.38 39
Energy	4.5725	39.7560	21.6274	0.2494		3.1592	3.1592		3.1592	3.1592		49,881.87 78	49,881.87 78	0.9561	0.9145	50,185.450 5
Mobile	1,053.4655	751.0107	4,464.102 1	11.8547	776.2857	15.5366	791.8223	207.4819	14.3441	221.8260		852,669.5 225	852,669.5 225	26.4103		853,224.13 94
Total	9,985.3011	912.3138	15,500.22 45	16.2508	776.2857	1,504.004 9	2,280.2906	207.4819	1,502.7689	1,710.2508	155,466.14 86	968,584.2 366	1,124,050. 3853	171.6301	13.1431	1,131,728. 9738

Mitigated Operational

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/c	lay							lb/	day		
Area	8,927.2630	121.5471	11,014.49 50	4.1467		1,485.309 1	1,485.3091		1,485.2656	1,485.2656	155,466.14 86	66,032.83 63	221,498.9 850	144.2637	12.2286	228,319.38 39
Energy	4.5725	39.7560	21.6274	0.2494		3.1592	3.1592		3.1592	3.1592		49,881.87 78	49,881.87 78	0.9561	0.9145	50,185.450 5
Mobile	1,053.4655	751.0107	4,464.102 1	11.8547	776.2857	15.5366	791.8223	207.4819	14.3441	221.8260		852,669.5 225	852,669.5 225	26.4103		853,224.13 94
Total	9,985.3011	912.3138	15,500.22 45	16.2508	776.2857	1,504.004 9	2,280.2906	207.4819	1,502.7689	1,710.2508	155,466.14 86	968,584.2 366	1,124,050. 3853	171.6301	13.1431	1,131,728. 9738

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio-CO2	Total CO2	CH4	N20	CO2e
Percent Reduction	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

3.0 Construction Detail

4.0 Operational Detail - Mobile

4.1 Mitigation Measures Mobile

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/c	lay							lb/d	day		
Mitigated	1,053.4655	751.0107	4,464.102 1	11.8547	776.2857	15.5366	791.8223	207.4819	14.3441	221.8260		852,669.5 225	852,669.5 225	26.4103		853,224.13 94
Unmitigated	1,053.4655	751.0107	4,464.102 1	11.8547	776.2857	15.5366	791.8223	207.4819	14.3441	221.8260		852,669.5 225	852,669.5 225	26.4103		853,224.13 94

4.2 Trip Summary Information

	Aver	age Daily Trip Ra	ate	Unmitigated	Mitigated
Land Use	Weekday	Saturday	Sunday	Annual VMT	Annual VMT
Apartments Low Rise	19,183.49	20,842.76	17669.77	55,325,406	55,325,406
Mobile Home Park	3,707.57	3,715.00	3239.48	10,491,510	10,491,510
General Light Industry	3,878.52	734.53	378.39	8,552,297	8,552,297
Single Family Housing	18,604.08	19,595.52	17048.88	53,364,269	53,364,269
Strip Mall	127,755.59	121,183.33	58890.95	180,151,355	180,151,355
General Office Building	12,709.14	2,735.75	1131.24	23,014,240	23,014,240
Total	185,838.39	168,806.89	98,358.71	330,899,077	330,899,077

4.3 Trip Type Information

		Miles			Trip %			Trip Purpos	se %
Land Use	H-W or C-W	H-S or C-C	H-O or C-NW	H-W or C-	H-S or C-C	H-O or C-NW	Primary	Diverted	Pass-by
Apartments Low Rise	10.80	7.30	7.50	44.00	18.80	37.20	86	11	3
Mobile Home Park	10.80	7.30	7.50	44.00	18.80	37.20	86	11	3
General Light Industry	9.50	7.30	7.30	59.00	28.00	13.00	92	5	3
Single Family Housing	10.80	7.30	7.50	44.00	18.80	37.20	86	11	3
Strip Mall	9.50	7.30	7.30	16.60	64.40	19.00	45	40	15
General Office Building	9.50	7.30	7.30	33.00	48.00	19.00	77	19	4

4.4 Fleet Mix

LDA	LDT1	LDT2	MDV	LHD1	LHD2	MHD	HHD	OBUS	UBUS	MCY	SBUS	MH
0.463801	0.038716	0.206906	0.161453	0.051141	0.007200	0.017453	0.036189	0.003411	0.002060	0.008397	0.000655	0.002618

5.0 Energy Detail

Historical Energy Use: N

5.1 Mitigation Measures Energy

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/c	lay							lb/d	day		
NaturalGas Mitigated	4.5725	39.7560	21.6274	0.2494		3.1592	3.1592		3.1592	3.1592		49,881.87 78	49,881.87 78	0.9561	0.9145	50,185.450 5
NaturalGas Unmitigated	4.5725	39.7560	21.6274	0.2494		3.1592	3.1592		3.1592	3.1592		49,881.87 78	49,881.87 78	0.9561	0.9145	50,185.450 5

5.2 Energy by Land Use - NaturalGas

Unmitigated

	NaturalGa s Use	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Land Use	kBTU/yr					lb/d	day							lb/d	day		
General Light Industry	41787.8	0.4507	4.0968	3.4414	0.0246		0.3114	0.3114		0.3114	0.3114		4,916.209 9	4,916.2099	0.0942	0.0901	4,946.1291
General Office Building	54458.9	0.5873	5.3391	4.4849	0.0320	0	0.4058	0.4058		0.4058	0.4058		6,406.933 4	6,406.9334	0.1228	0.1175	6,445.9250
Mobile Home Park	34180.6	0.3686	3.1500	1.3404	0.0201		0.2547	0.2547		0.2547	0.2547		4,021.252 5	4,021.2525	0.0771	0.0737	4,045.7252
Single Family Housing	187918	2.0266	17.3179	7.3693	0.1105		1.4002	1.4002		1.4002	1.4002		22,108.00 14	22,108.001 4	0.4237	0.4053	22,242.547 0
Strip Mall	19664.7	0.2121	1.9279	1.6194	0.0116		0.1465	0.1465		0.1465	0.1465		2,313.490 5	2,313.4905	0.0443	0.0424	2,327.5700
Apartments Low Rise	85985.9	0.9273	7.9242	3.3720	0.0506		0.6407	0.6407		0.6407	0.6407		10,115.99 01	10,115.990 1	0.1939	0.1855	10,177.554 3
Total		4.5725	39.7560	21.6274	0.2494		3.1592	3.1592		3.1592	3.1592		49,881.87 78	49,881.877 8	0.9561	0.9145	50,185.450 6

Mitigated

	NaturalGa s Use	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Land Use	kBTU/yr					lb/d	day							lb/d	day		
General Light Industry	41.7878	0.4507	4.0968	3.4414	0.0246		0.3114	0.3114		0.3114	0.3114		4,916.209 9	4,916.2099	0.0942	0.0901	4,946.1291
General Office Building	54.4589	0.5873	5.3391	4.4849	0.0320		0.4058	0.4058		0.4058	0.4058		6,406.933 4	6,406.9334	0.1228	0.1175	6,445.9250
Mobile Home Park	34.1806	0.3686	3.1500	1.3404	0.0201		0.2547	0.2547		0.2547	0.2547		4,021.252 5	4,021.2525	0.0771	0.0737	4,045.7252
Single Family Housing	187.918	2.0266	17.3179	7.3693	0.1105		1.4002	1.4002		1.4002	1.4002		22,108.00 14	22,108.001 4	0.4237	0.4053	22,242.547 0
Strip Mall	19.6647	0.2121	1.9279	1.6194	0.0116		0.1465	0.1465		0.1465	0.1465		2,313.490 5	2,313.4905	0.0443	0.0424	2,327.5700
Apartments Low Rise	85.9859	0.9273	7.9242	3.3720	0.0506		0.6407	0.6407		0.6407	0.6407		10,115.99 01	10,115.990 1	0.1939	0.1855	10,177.554 3
Total		4.5725	39.7560	21.6274	0.2494		3.1592	3.1592		3.1592	3.1592		49,881.87 78	49,881.877 8	0.9561	0.9145	50,185.450 6

6.0 Area Detail

6.1 Mitigation Measures Area

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	ay							lb/d	day		
Mitigated	8,927.2630	121.5471	11,014.49 50	4.1467		1,485.309 1	1,485.3091		1,485.2656	1,485.2656	155,466.14 86	66,032.83 63	221,498.9 850	144.2637	12.2286	228,319.38 39
Unmitigated	8,927.2630	121.5471	11,014.49 50	4.1467		1,485.309 1	1,485.3091		1,485.2656	1,485.2656	155,466.14 86	66,032.83 63	221,498.9 850	144.2637	12.2286	228,319.38 39

6.2 Area by SubCategory

Unmitigated

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
SubCategory	lb/day						lb/day									
Architectural Coating	91.7526					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Consumer Products	254.5564					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Hearth	8,567.1510	116.2333	10,553.81 00	4.1223		1,482.746 3	1,482.7463		1,482.7028	1,482.7028	155,466.14 86	65,200.23 53	220,666.3 839	143.4695	12.2286	227,470.10 42
Landscaping	13.8030	5.3138	460.6851	0.0244		2.5628	2.5628		2.5628	2.5628		832.6010	832.6010	0.7942		849.2797
Total	8,927.2630	121.5471	11,014.49 50	4.1467		1,485.309 1	1,485.3091		1,485.2656	1,485.2656	155,466.14 86	66,032.83 63	221,498.9 850	144.2637	12.2286	228,319.38 39

Mitigated

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
SubCategory	lb/day							lb/day								
Architectural Coating	91.7526					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Consumer Products	254.5564					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Hearth	8,567.1510	116.2333	10,553.81 00	4.1223		1,482.746 3	1,482.7463		1,482.7028	1,482.7028	155,466.14 86	65,200.23 53	220,666.3 839	143.4695	12.2286	227,470.10 42
Landscaping	13.8030	5.3138	460.6851	0.0244		2.5628	2.5628		2.5628	2.5628		832.6010	832.6010	0.7942		849.2797
Total	8,927.2630	121.5471	11,014.49 50	4.1467		1,485.309 1	1,485.3091		1,485.2656	1,485.2656	155,466.14 86	66,032.83 63	221,498.9 850	144.2637	12.2286	228,319.38 39

7.0 Water Detail

7.1 Mitigation Measures Water

8.0 Waste Detail

8.1 Mitigation Measures Waste

9.0 Operational Offroad

Equipment Type	Number	Hours/Day	Days/Year	Horse Power	Load Factor	Fuel Type

10.0 Vegetation

APPENDIX C

Noise Monitoring and Modeling Data

.....

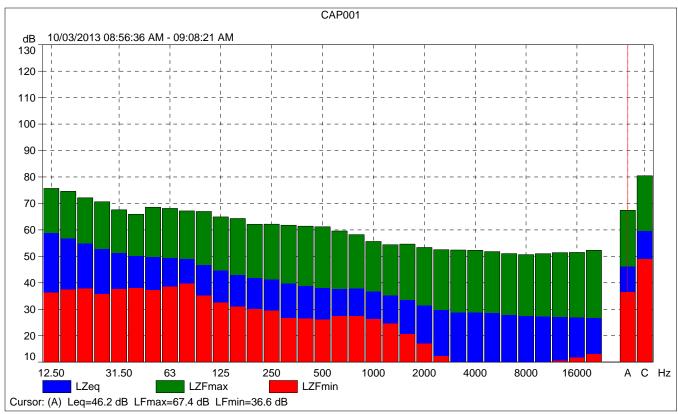
Site Number: NM-1										
Recorded By: Bill Wiseman										
Job Number: 131347										
Date: 10/3/13										
Time: 8:56 AM										
Location: Alma Lane cul-de-	sac, off of Rosedale Avenue									
Source of Peak Noise: Traff	ic on Rosedale Avenue and bi	rds chirping								
	Noise Data									
Leq (dB)	Lmin (dB)	Lmax (dB)	Peak (dB)							
46.2	36.6	67.4	97.1							

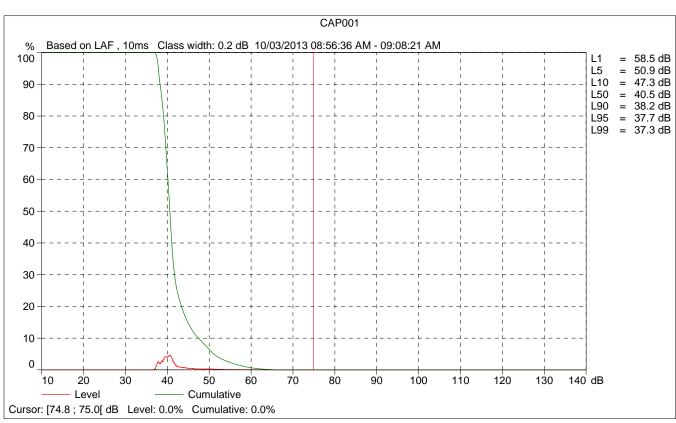
			Equipme	nt						
Category	Type	Vendor	Mod	el	Serial No.	Cert. Date	Note			
Sound -	Sound Level Meter	Brüel & Kjæ	er 225	0	2548189	7/12/2013				
	Microphone	Brüel & Kjæ	er 418	9	2543364	7/12/2013				
	Preamp	Brüel & Kjæ	er ZC 00	32	4265	7/12/2013				
	Calibrator	Brüel & Kjæ	er 423	1	2545667	7/12/2013				
	Weather Data									
	Duration : 10minu	ites								
	Note: dBA Offset	= 0.02		Ser	nsor Height (ft): 5	ft				
Est.	Wind Ave Speed	Wind Ave Speed (mph / m/s)			s Fahrenheit)	Barometer Pressure (inches)				
	1.0	1.0				30.06				

Photo of Measurement Location

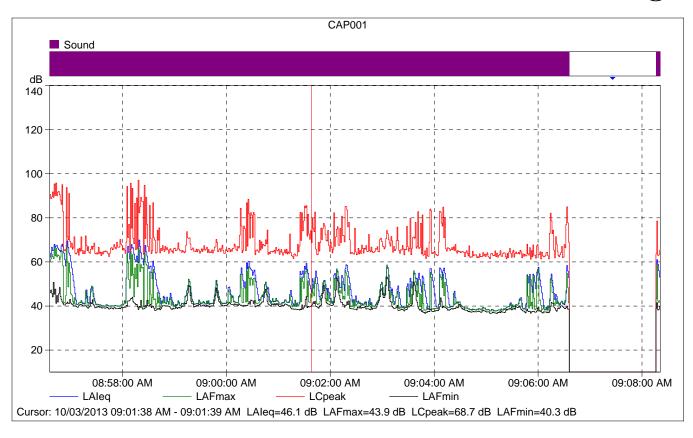
2250

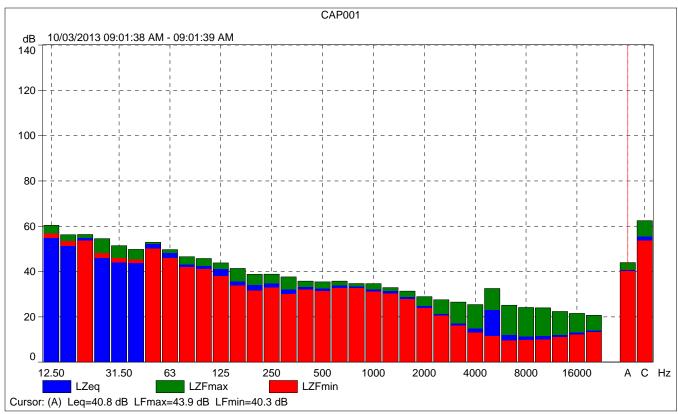
Instrument:	2250
Application:	BZ7225 Version 2.0.2
Start Time:	10/03/2013 08:56:36
End Time:	10/03/2013 09:08:21
Elapsed Time:	00:10:05
Bandwidth:	1/3-octave
Max Input Level:	138.83

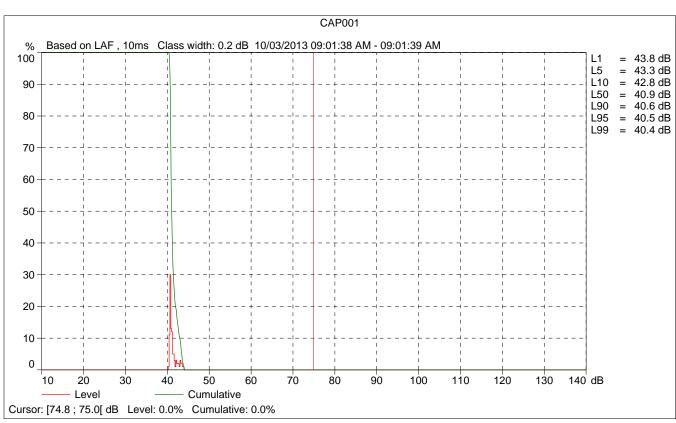

	Time	Frequency
Broadband (excl. Peak):	FSI	AC
Broadband Peak:		С
Spectrum:	FS	Ζ

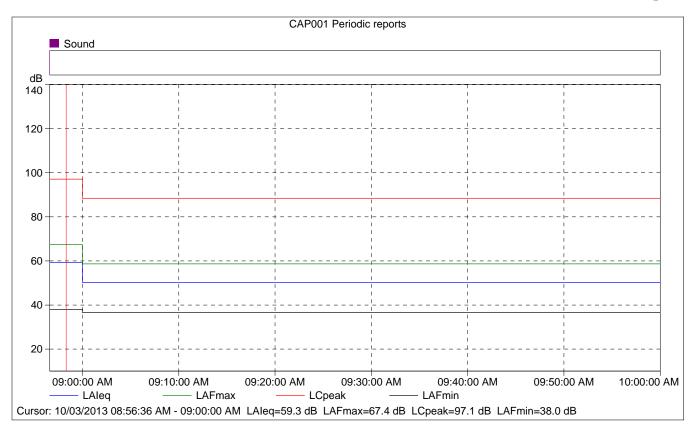

Instrument Serial Number:	2548189
Microphone Serial Number:	2543364
Input:	Top Socket
Windscreen Correction:	UA-1650
Sound Field Correction:	Diffuse-field

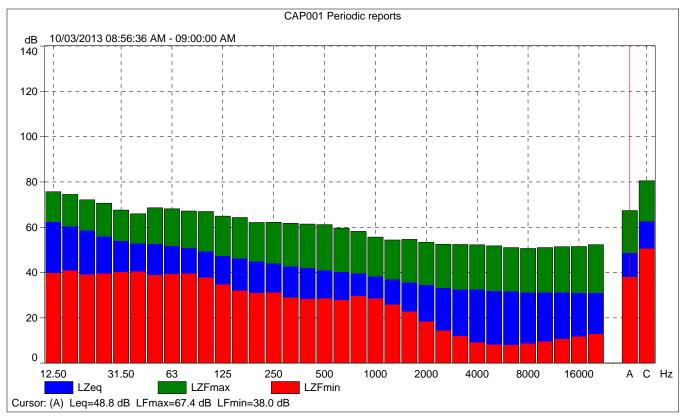
Calibration Time:	10/01/2013 11:27:28
Calibration Type:	External reference
Sensitivity:	63.74 mV/Pa

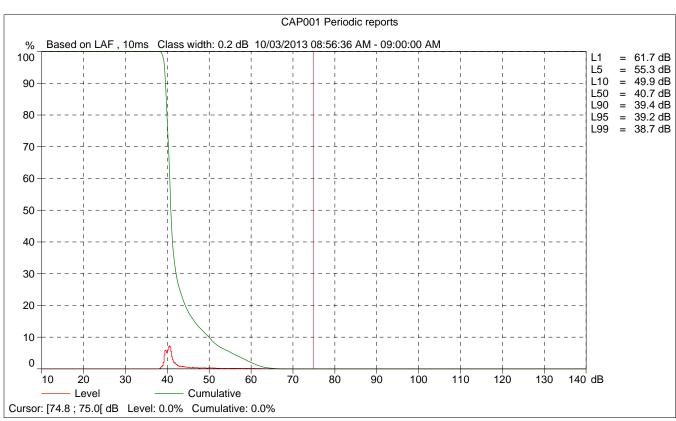

	Start	End	Elapsed	Overload	LAeq	LAFmax	LAFmin
	time	time	time	[%]	[dB]	[dB]	[dB]
Value				0.00	46.2	67.4	36.6
Time	08:56:36 AM	09:08:21 AM	0:10:05				
Date	10/03/2013	10/03/2013					



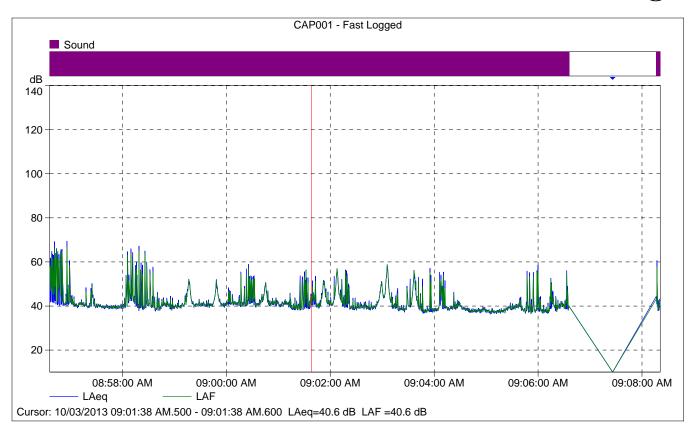



	Start	Elapsed	LAleq	LAFmax	LAFmin
	time	time	[dB]	[dB]	[dB]
Value			46.1	43.9	40.3
Time	09:01:38 AM	0:00:01			
Date	10/03/2013				





CAP001 Periodic reports


	Start	Elapsed	Overload	LAleq	LAFmax	LAFmin
	time	time	[%]	[dB]	[dB]	[dB]
Value			0.00	59.3	67.4	38.0
Time	08:56:36 AM	0:03:24				
Date	10/03/2013					

CAP001 - Fast Logged

	Start	Elapsed	LAeq
	time	time	[dB]
Value			40.6
Time	09:01:38 AM.500	0:00:00.100	
Date	10/03/2013		
Date	10/03/2013		

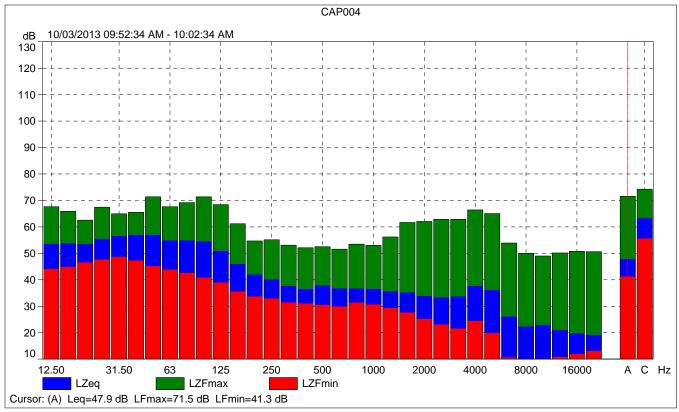
Site Number: NM-2	Site Number: NM-2						
Recorded By: Bill Wiseman							
Job Number: 131347							
Date : 10/3/13	Date: 10/3/13						
Time: 9:52 AM	Time: 9:52 AM						
Location: Derby Avenue cul-	de-sac, off of Clares Street						
Source of Peak Noise: Traffi	ic on Derby Street						
	Noise Data						
Leq (dB)	Lmin (dB)	Lmax (dB)	Peak (dB)				
47.9	41.3	71.5	91.7				

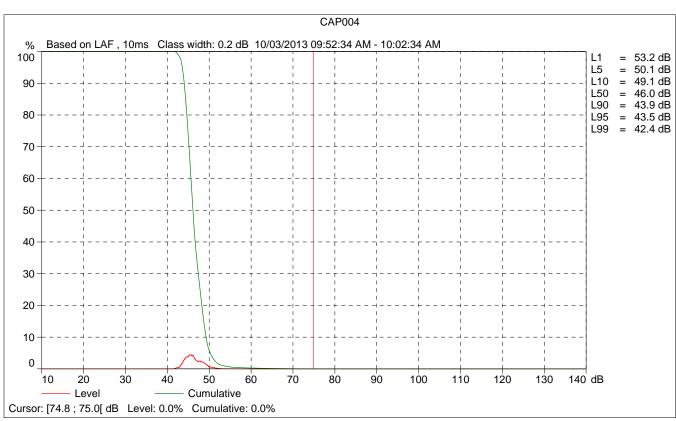
			Equip	ment			
Category	Type	Vendor	N	Model	Serial No.	Cert. Date	Note
	Sound Level Meter	Brüel & Kjæ	er	2250	2548189	7/12/2013	
Cound	Microphone	Brüel & Kjæ	er	4189	2543364	7/12/2013	
Sound	Preamp	Brüel & Kjæ	er Zo	C 0032	4265	7/12/2013	
	Calibrator	Brüel & Kjæ	er	4231	2545667	7/12/2013	
			Weath	er Data			
	Duration : 10minu	ites		,	Sky: Sunny		
	Note: dBA Offset	= 0.02		(Sensor Height (ft): 5	ft	
Est.	Wind Ave Speed	(mph / m/s)	Tempera	ture (degre	ees Fahrenheit)	Barometer Pressur	e (inches)
	1.0			59		30.06	

Photo of Measurement Location

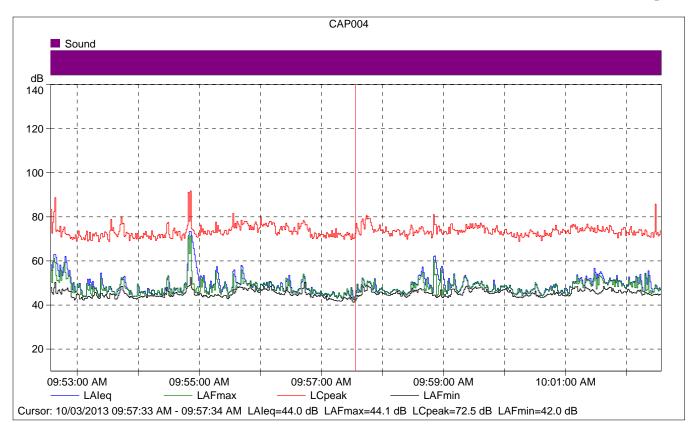
2250

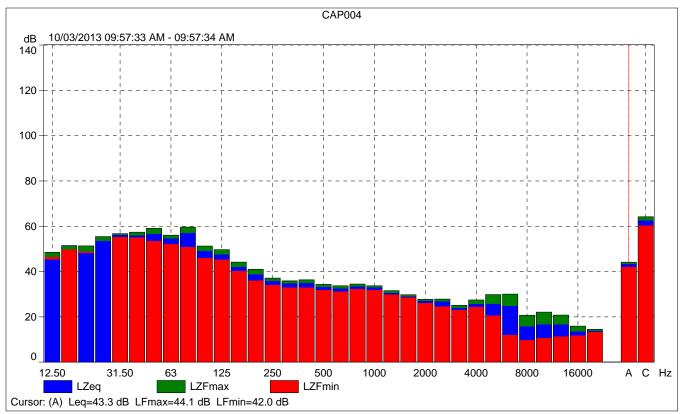
Instrument:	2250
Application:	BZ7225 Version 2.0.2
Start Time:	10/03/2013 09:52:34
End Time:	10/03/2013 10:02:34
Elapsed Time:	00:10:00
Bandwidth:	1/3-octave
Max Input Level:	138.83

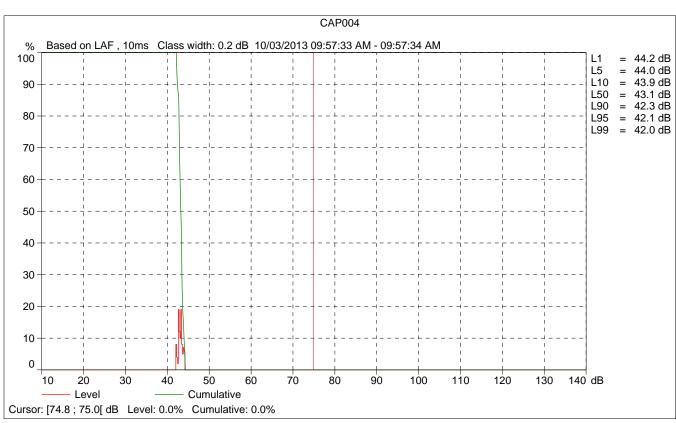

	Time	Frequency
Broadband (excl. Peak):	FSI	AC
Broadband Peak:		С
Spectrum:	FS	Ζ

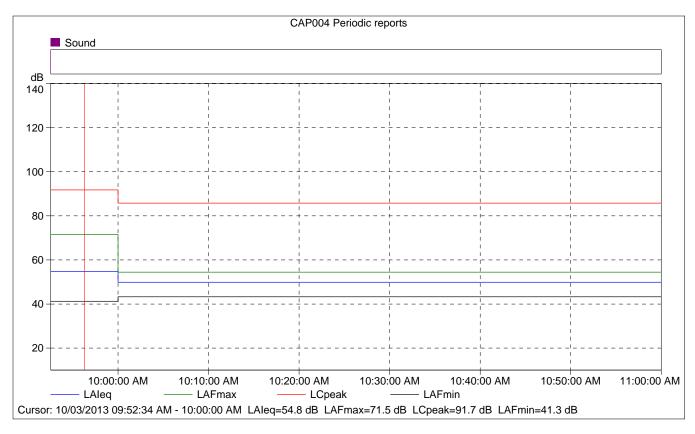

Instrument Serial Number:	2548189
Microphone Serial Number:	2543364
Input:	Top Socket
Windscreen Correction:	UA-1650
Sound Field Correction:	Diffuse-field

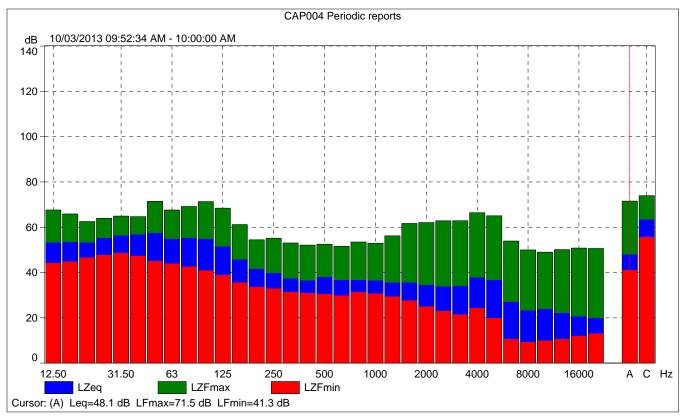
Calibration Time:	10/01/2013 11:27:28
Calibration Type:	External reference
Sensitivity:	63.74 mV/Pa

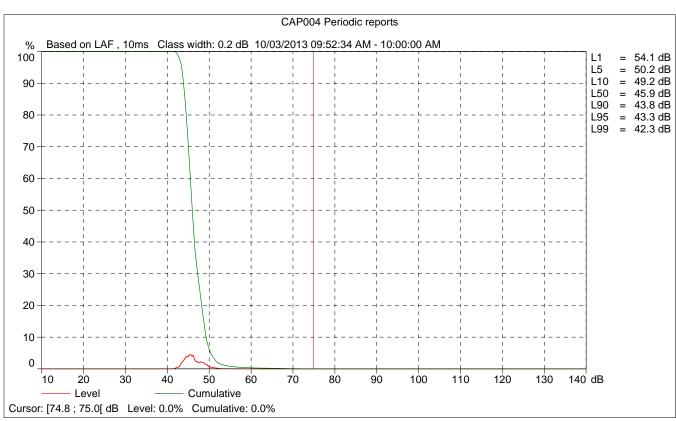

	Start	End	Elapsed	Overload	LAeq	LAFmax	LAFmin
	time	time	time	[%]	[dB]	[dB]	[dB]
Value				0.00	47.9	71.5	41.3
Time	09:52:34 AM	10:02:34 AM	0:10:00				
Date	10/03/2013	10/03/2013					






	Start	Elapsed	LAleq	LAFmax	LAFmin
	time	time	[dB]	[dB]	[dB]
Value			44.0	44.1	42.0
Time	09:57:33 AM	0:00:01			
Date	10/03/2013				





CAP004 Periodic reports

	Start	Elapsed	Overload	LAleq	LAFmax	LAFmin
	time	time	[%]	[dB]	[dB]	[dB]
Value			0.00	54.8	71.5	41.3
Time	09:52:34 AM	0:07:26				
Date	10/03/2013					

CAP004 - Fast Logged

	Start	Elapsed	LAeq
	time	time	[dB]
Value			43.6
Time	09:57:33 AM.900	0:00:00.100	
Date	10/03/2013		

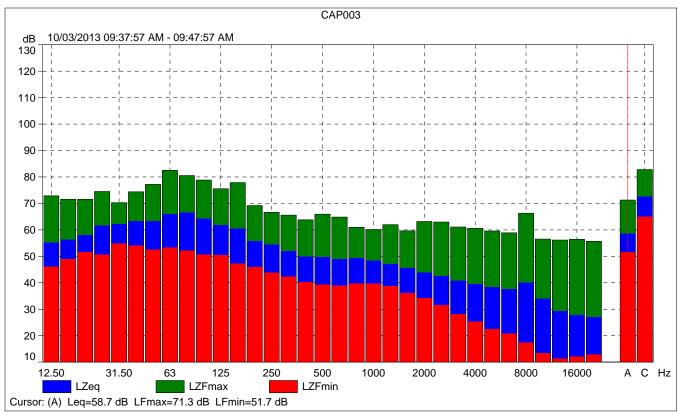
Site Number: NM-3							
Recorded By: Bill Wiseman	Recorded By: Bill Wiseman						
Job Number: 131347							
Date : 10/3/13							
Time: 9:37 AM	Time: 9:37 AM						
Location: Capitola Mall parking lot, off of 41st Avenue							
Source of Peak Noise: Traffic along 41st Avenue, and cars and pedestrians in the parking lot							
Noise Data							
Leq (dB)	Lmin (dB)	Lmax (dB)	Peak (dB)				
58.7	51.7	71.3	95.7				

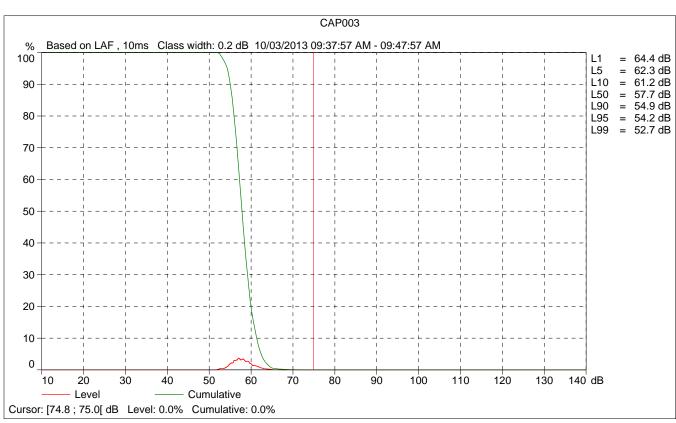
Equipment								
Category	Type	Vendor		Model	Serial No.	Cert. Date	Note	
	Sound Level Meter	Brüel & Kja	er	2250	2548189	7/12/2013		
Sound	Microphone	Brüel & Kja	er	4189	2543364	7/12/2013		
Sound	Preamp	Brüel & Kja	er	ZC 0032	4265	7/12/2013		
	Calibrator	Brüel & Kja	er	4231	2545667	7/12/2013		
	Weather Data							
	Duration : 10minu	nutes Sky: Sunny						
	Note: dBA Offset	= 0.02			Sensor Height (ft): 5 ft			
Est.	Wind Ave Speed	d (mph / m/s) Tem		emperature (degrees Fahrenheit)		Barometer Pressure (inches)		
	2.5	2.5		57		30.06		

Photo of Measurement Location

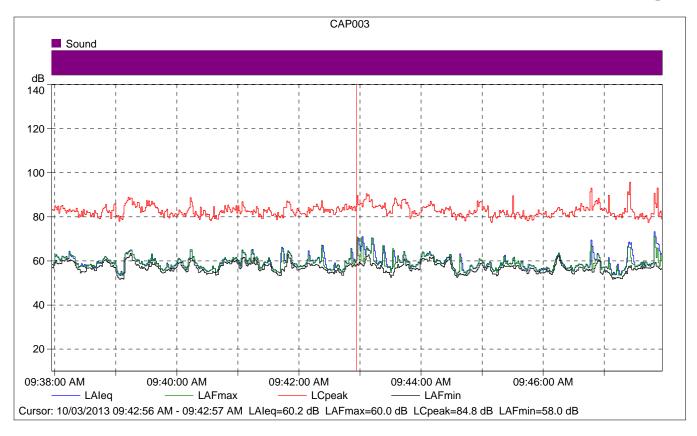
2250

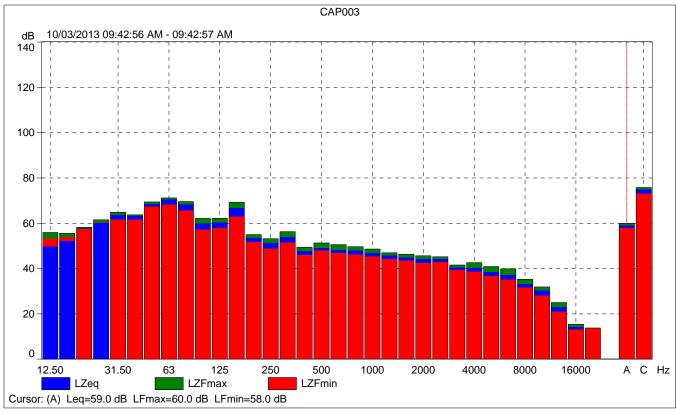
Instrument:	2250
Application:	BZ7225 Version 2.0.2
Start Time:	10/03/2013 09:37:57
End Time:	10/03/2013 09:47:57
Elapsed Time:	00:10:00
Bandwidth:	1/3-octave
Max Input Level:	138.83

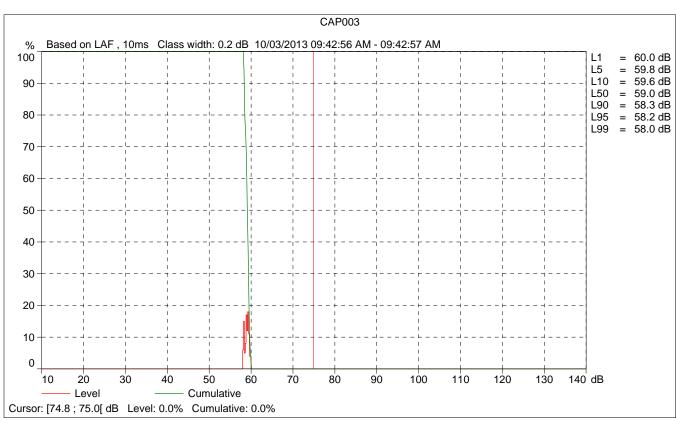

	Time	Frequency
Broadband (excl. Peak):	FSI	AC
Broadband Peak:		С
Spectrum:	FS	Ζ

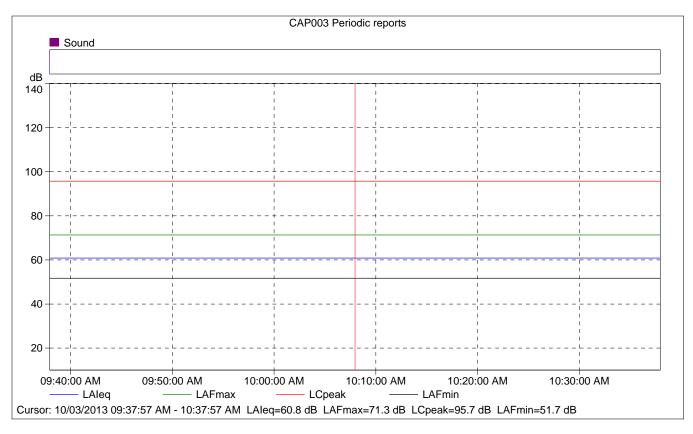

Instrument Serial Number:	2548189
Microphone Serial Number:	2543364
Input:	Top Socket
Windscreen Correction:	UA-1650
Sound Field Correction:	Diffuse-field

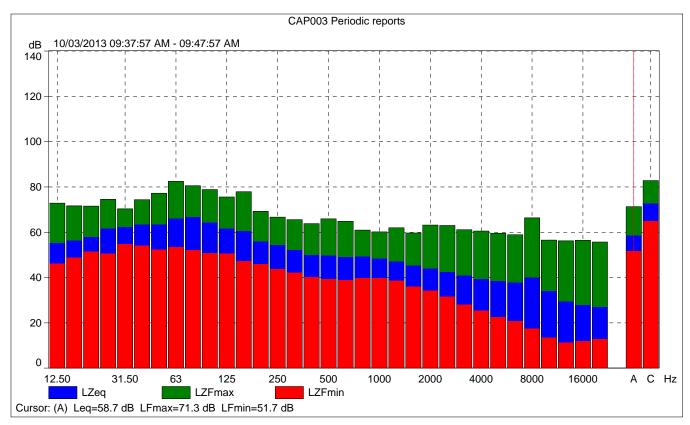
Calibration Time:	10/01/2013 11:27:28
Calibration Type:	External reference
Sensitivity:	63.74 mV/Pa

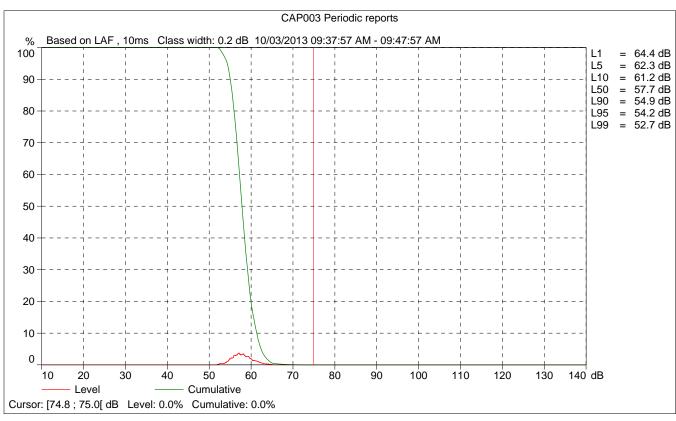

	Start	End	Elapsed	Overload	LAeq	LAFmax	LAFmin
	time	time	time	[%]	[dB]	[dB]	[dB]
Value				0.00	58.7	71.3	51.7
Time	09:37:57 AM	09:47:57 AM	0:10:00				
Date	10/03/2013	10/03/2013					



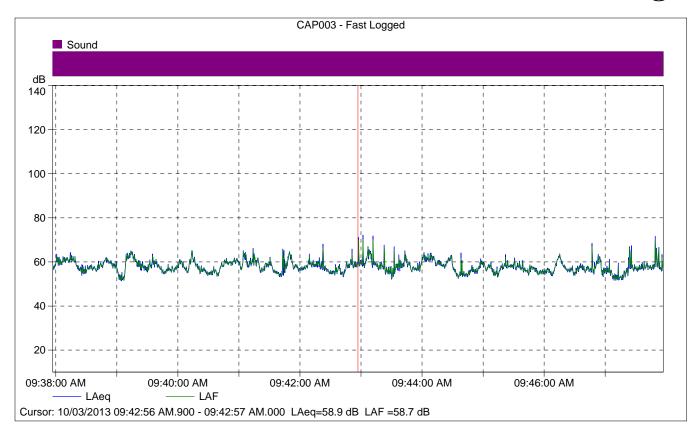



	Start	Elapsed	LAleq	LAFmax	LAFmin
	time	time	[dB]	[dB]	[dB]
Value			60.2	60.0	58.0
Time	09:42:56 AM	0:00:01			
Date	10/03/2013				





CAP003 Periodic reports


	Start	Elapsed	Overload	LAleq	LAFmax	LAFmin
	time	time	[%]	[dB]	[dB]	[dB]
Value			0.00	60.8	71.3	51.7
Time	09:37:57 AM	0:10:00				
Date	10/03/2013					

CAP003 - Fast Logged

	Start	Elapsed	LAeq
	time	time	[dB]
Value			58.9
Time	09:42:56 AM.900	0:00:00.100	
Date	10/03/2013		

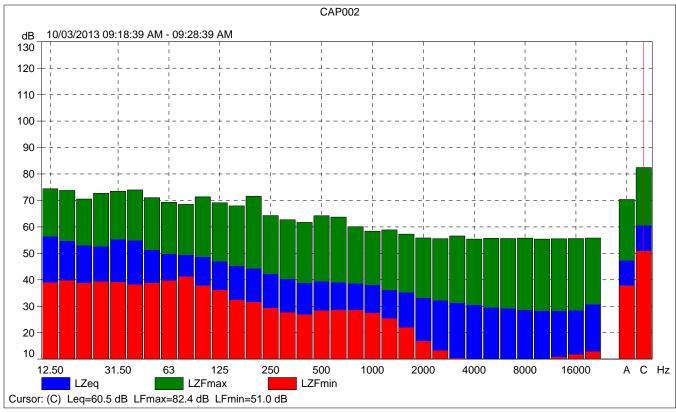
Site Number: NM-4	Site Number: NM-4						
Recorded By: Bill Wiseman							
Job Number: 131347							
Dat e: 10/3/13							
Time : 9:18 AM							
Location: Diamond Street, in	a residential neighborhood bet	ween 42 nd and 45 th Avenue					
Source of Peak Noise: Cars	on Diamond Street and surrour	nding neighborhood					
	Noise Data						
Leq (dB)	Lmin (dB)	Lmax (dB)	Peak (dB)				
47.5	37.9	70.3	98.3				

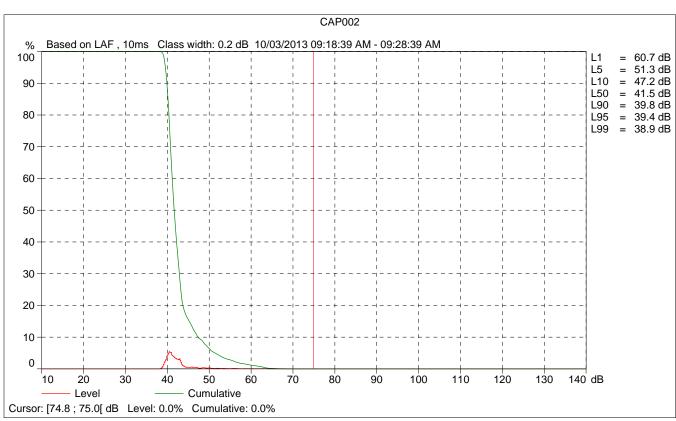
Equipment								
Category	Type	Vendor		Model	Serial No.	Cert. Date	Note	
	Sound Level Meter	Brüel & Kja	ær	2250	2548189	7/12/2013		
Sound	Microphone	Brüel & Kja	ær	4189	2543364	7/12/2013		
Sound	Preamp	Brüel & Kja	ær	ZC 0032	4265	7/12/2013		
	Calibrator	Brüel & Kja	ær	4231	2545667	7/12/2013		
			V	Veather Data				
	Duration : 10minu	ites			Sky: Sunny			
	Note: dBA Offset	= 0.02	0.02 Sensor Height (ft): 5 ft					
Est.	Wind Ave Speed	Wind Ave Speed (mph / m/s)		Temperature (degrees Fahrenheit)		Barometer Pressure (inches)		
	1.0	1.0		54		30.06		

Photo of Measurement Location

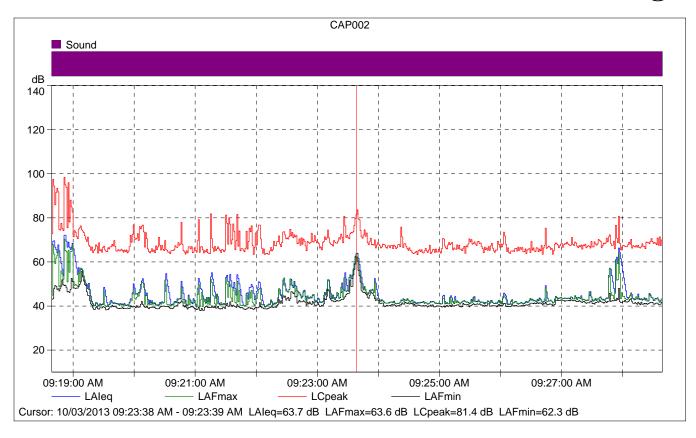
Instrument:	2250
Application:	BZ7225 Version 2.0.2
Start Time:	10/03/2013 09:18:39
End Time:	10/03/2013 09:28:39
Elapsed Time:	00:10:00
Bandwidth:	1/3-octave
Max Input Level:	138.83

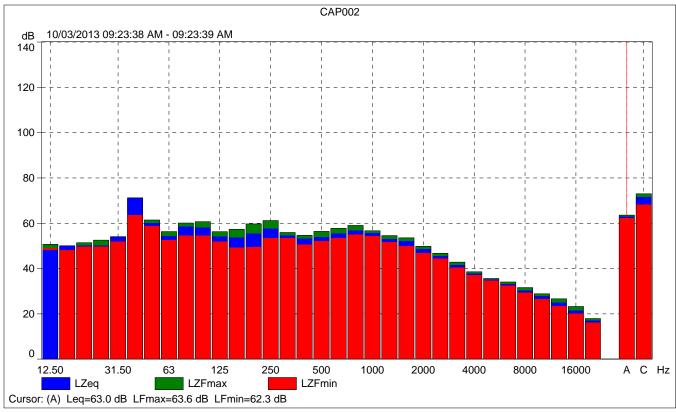
	Time	Frequency
Broadband (excl. Peak):	FSI	AC
Broadband Peak:		С
Spectrum:	FS	Ζ

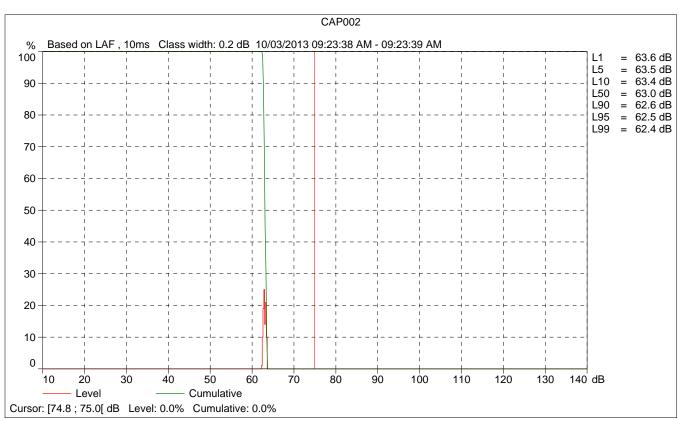

Instrument Serial Number:	2548189
Microphone Serial Number:	2543364
Input:	Top Socket
Windscreen Correction:	UA-1650
Sound Field Correction:	Diffuse-field


Calibration Time:	10/01/2013 11:27:28
Calibration Type:	External reference
Sensitivity:	63.74 mV/Pa

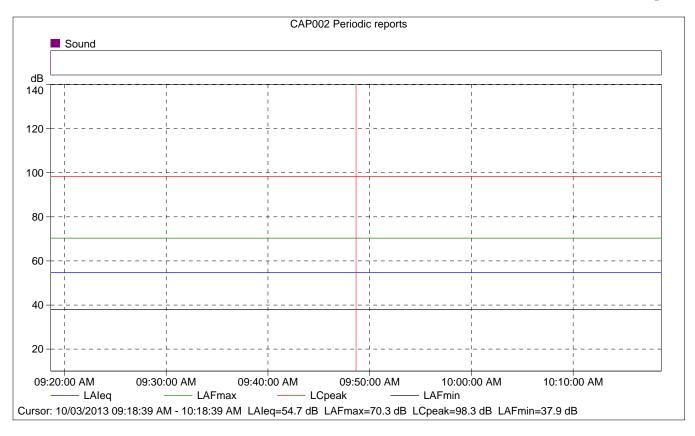
CAP002

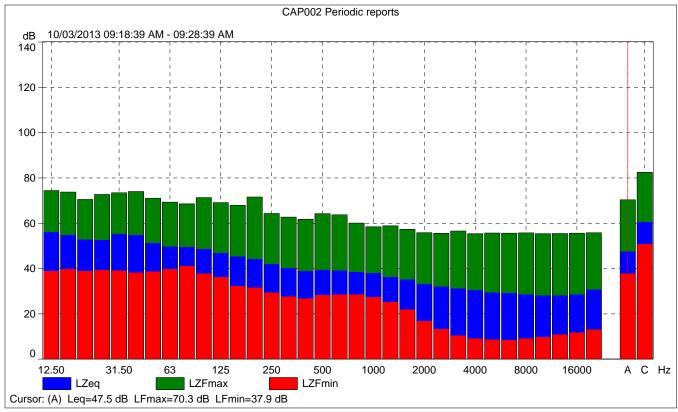

	Start	End	Elapsed	Overload	LAeq	LAFmax	LAFmin
	time	time	time	[%]	[dB]	[dB]	[dB]
Value				0.00	47.5	70.3	37.9
Time	09:18:39 AM	09:28:39 AM	0:10:00				
Date	10/03/2013	10/03/2013					

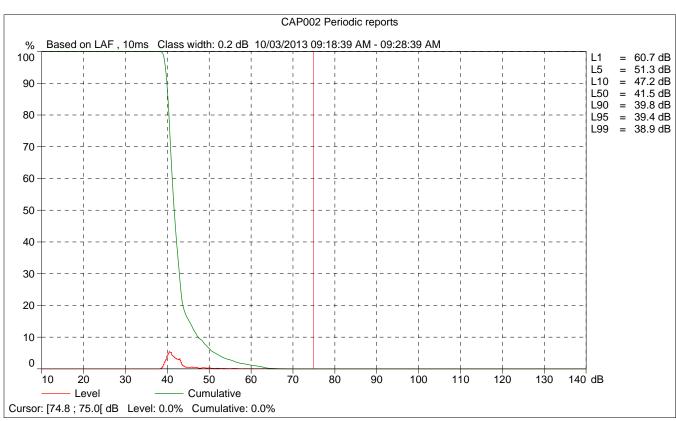




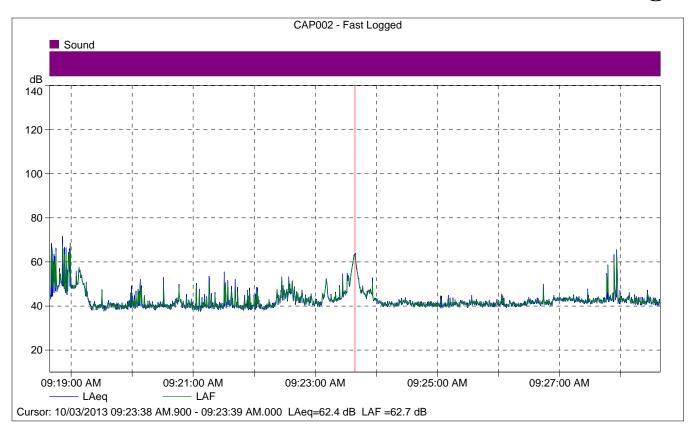
CAP002


	Start	Elapsed	LAleq	LAFmax	LAFmin
	time	time	[dB]	[dB]	[dB]
Value			63.7	63.6	62.3
Time	09:23:38 AM	0:00:01			
Date	10/03/2013				





CAP002 Periodic reports


	Start	Elapsed	Overload	LAleq	LAFmax	LAFmin
	time	time	[%]	[dB]	[dB]	[dB]
Value			0.00	54.7	70.3	37.9
Time	09:18:39 AM	0:10:00				
Date	10/03/2013					

CAP002 - Fast Logged

	Start	Elapsed	LAeq
	time	time	[dB]
Value			62.4
Time	09:23:38 AM.900	0:00:00.100	
Date	10/03/2013		

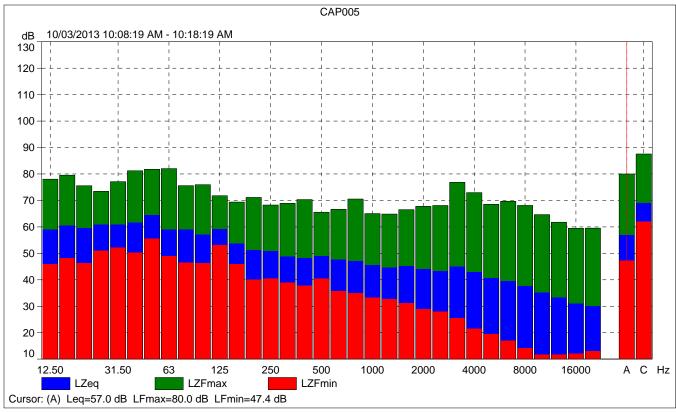
Site Number: NM-5 Recorded By: Bill Wiseman Job Number: 131347 Date: 10/3/13 Time: 10:08 AM Location: Capitola Village, near the intersection of Esplanade and San Jose Avenue Source of Peak Noise: Traffic, people walking/talking, delivery trucks in the area, and recycling activities Noise Data Lmin (dB) Lmax (dB) Leq (dB) Peak (dB) 57.0 47.4 80.08 99.4

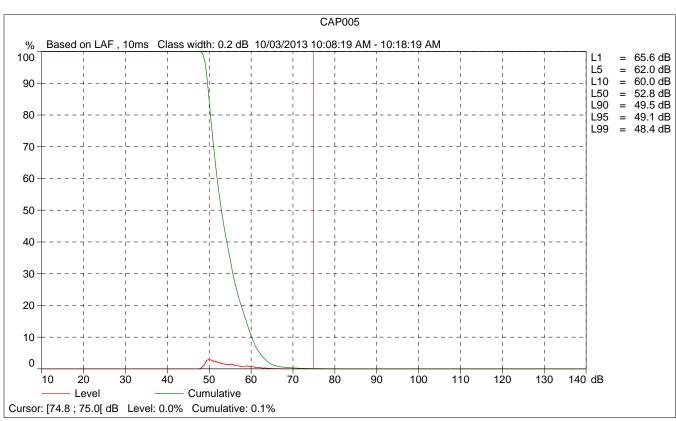
Equipment								
Category	Type	Vendor		Model	Serial No.	Cert. Date	Note	
	Sound Level Meter	Brüel & Kja	er	2250	2548189	7/12/2013		
Sound	Microphone	Brüel & Kja	er	4189	2543364	7/12/2013		
Sound	Preamp	Brüel & Kja	er	ZC 0032	4265	7/12/2013		
	Calibrator	Brüel & Kja	er	4231	2545667	7/12/2013		
			W	leather Data				
	Duration : 10minu	ites			Sky: Sunny			
	Note: dBA Offset :	= 0.02	Sensor Height (ft): 5 ft					
Est.	Wind Ave Speed	Wind Ave Speed (mph / m/s)		Temperature (degrees Fahrenheit)		Barometer Pressure (inches)		
	2.5	2.5		59		30.06		

Photo of Measurement Location

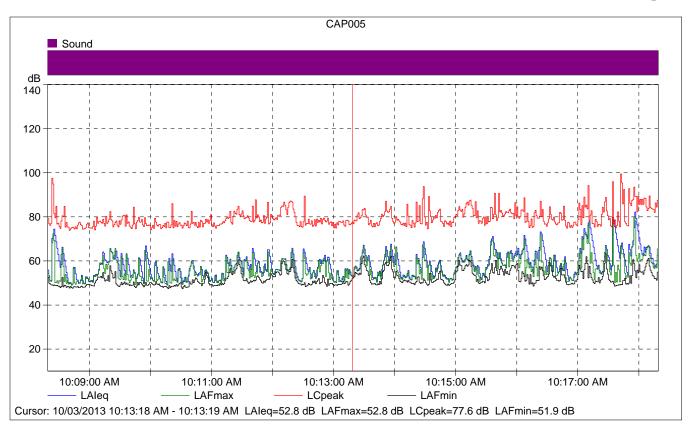
Instrument:	2250
Application:	BZ7225 Version 2.0.2
Start Time:	10/03/2013 10:08:19
End Time:	10/03/2013 10:18:19
Elapsed Time:	00:10:00
Bandwidth:	1/3-octave
Max Input Level:	138.83

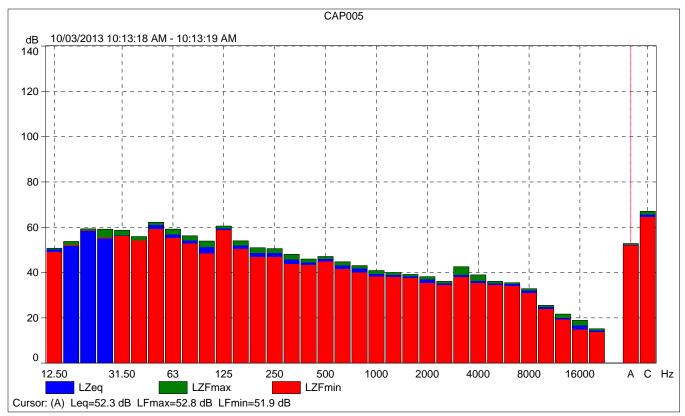
	Time	Frequency
Broadband (excl. Peak):	FSI	AC
Broadband Peak:		С
Spectrum:	FS	Ζ

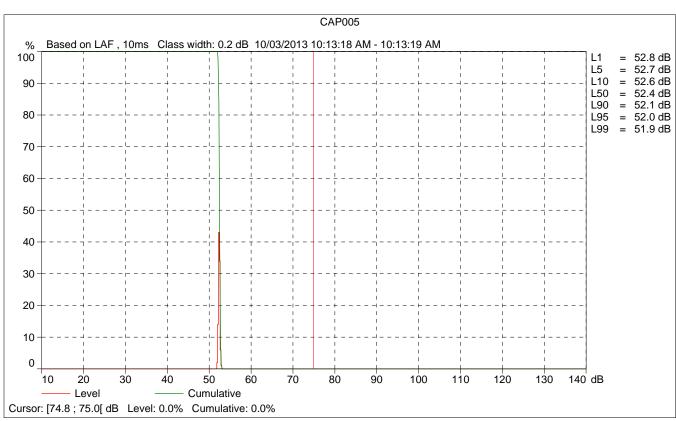

Instrument Serial Number:	2548189
Microphone Serial Number:	2543364
Input:	Top Socket
Windscreen Correction:	UA-1650
Sound Field Correction:	Diffuse-field


Calibration Time:	10/01/2013 11:27:28
Calibration Type:	External reference
Sensitivity:	63.74 mV/Pa

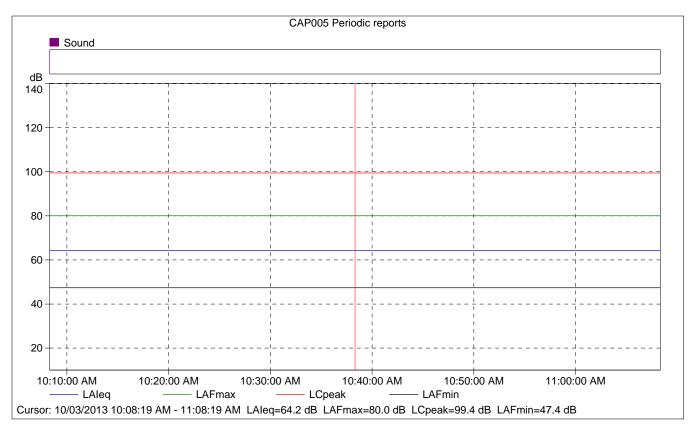
CAP005

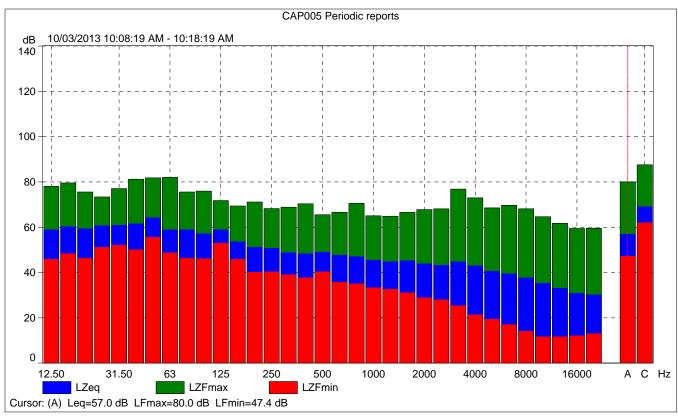

	Start	End	Elapsed	Overload	LAeq	LAFmax	LAFmin
	time	time	time	[%]	[dB]	[dB]	[dB]
Value				0.00	57.0	80.0	47.4
Time	10:08:19 AM	10:18:19 AM	0:10:00				
Date	10/03/2013	10/03/2013					

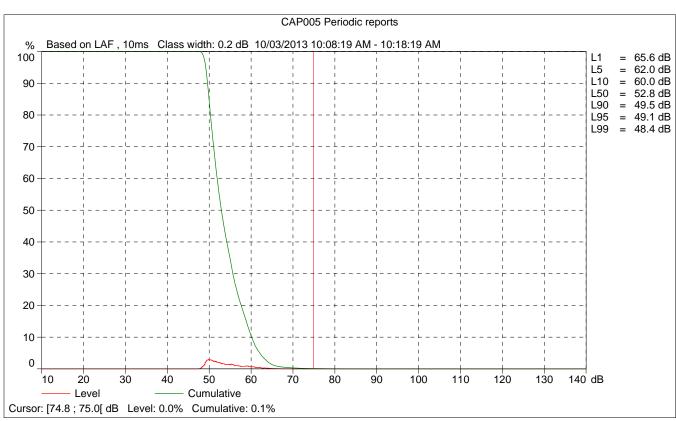




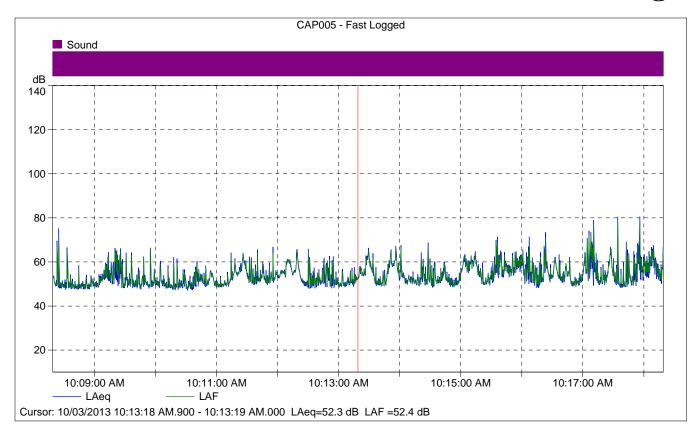
CAP005


	Start	Elapsed	LAleq	LAFmax	LAFmin
	time	time	[dB]	[dB]	[dB]
Value			52.8	52.8	51.9
Time	10:13:18 AM	0:00:01			
Date	10/03/2013				





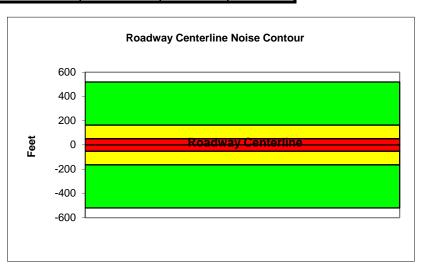
CAP005 Periodic reports


	Start	Elapsed	Overload	LAleq	LAFmax	LAFmin
	time	time	[%]	[dB]	[dB]	[dB]
Value			0.00	64.2	80.0	47.4
Time	10:08:19 AM	0:10:00				
Date	10/03/2013					

CAP005 - Fast Logged

	Start	Elapsed	LAeq
	time	time	[dB]
Value			52.3
Time	10:13:18 AM.900	0:00:00.100	
Date	10/03/2013		

Federal Highway Administration RD-77-108 **Traffic Noise Prediction Model (CALVENO)** Project Name: Capitola General Plan Scenario: Existing Analyst: Ryan Chiene Job #: 70-100329 Roadway: 41st Street Road Segment: NB SR-1 Ramps to Gross Road PROJECT DATA SITE DATA Centerline Dist to Barrier 0 Road Grade: 0


Barrier (0=wall, 1= berm): 0 Average Daily Traffic: 30162 Receiver Barrier Dist: Peak Hour Traffic: 3016.2 0 Centerline Dist. To Observer: Vehicle Speed: 100 35 Barrier Near Lane CL Dist: 0 Centerline Separation: 36 **NOISE INPUTS** Barrier Far lane CL Dist: 0 Site conditions HARD SITE Pad Elevation: 0.5 FLEET MIX Road Elevation: 0 Observer Height (above grade): 0 Day Evening Night Daily Type Barrier Height: 0.9742 0 Auto 0.775 0.129 0.096 Rt View: 90 Lft View: -90 Med. Truck 0.848 0.049 0.103 0.0184 **NOISE SOURCE ELEVATIONS (Feet)** Heavy Truck 0.865 0.027 0.108 0.0074 Autos:

Autos: 0
Medium Trucks: 2.3
Heavy Trucks: 8

UNMITIG	UNMITIGATED NOISE LEVELS (No topographic or barrier attenuation)									
Vehicle Type	Peak Leq	Leq Day	Leq Evening	Leq Night	Ldn	CNEL				
Autos:	54.6	63.4	61.6	55.5	64.2	64.8				
Medium Trucks:	64.3	56.3	49.9	48.3	56.8	57.0				
Heavy Trucks:	69.5	57.6	48.6	49.8	59.7	59.8				
Vehicle Noise:	72.0	65.3	62.2	57.5	66.0	66.5				

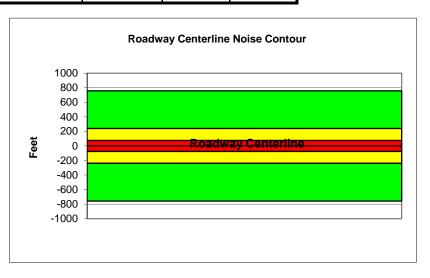
MITIGATED NOISE LEVELS (With topographic or barrier attenuation)								
Vehicle Type	Peak Leq	Leq Day	Leq Evening	Leq Night	Ldn	CNEL		
Autos:								
Medium Trucks:								
Heavy Trucks:								
Vehicle Noise:								

CENTERLINE NOIS	SE CONTOUR
Unmitigated	
60 dBA	520
65 dBA	164
70 dBA	52
Mitigated	
60 dBA	
65 dBA	
70 dBA	

Federal Highway Administration RD-77-108 Traffic Noise Prediction Model (CALVENO) Project Name: Capitola General Plan Scenario: Existing Analyst: Ryan Chiene Job #: 70-100329 Roadway: 41st Street

Road Segment: Gross Road to Clares Street

Medium Trucks: Heavy Trucks:


	PROJECT DATA				SITE DATA					
Centerline D	ist to Barrier	0		Road Grade:		0				
Barrier (0=w	all, 1= berm):	0		Average Daily Traffic: 43957						
Receiver Ba	rrier Dist:	0		Peak Hour Tr						
Centerline D	ist. To Observ	er: 100		Vehicle Spee	d:	35				
Barrier Near	Lane CL Dist:	0		Centerline Se	eparation:	36				
Barrier Far la	ane CL Dist:	0			NO	ISE INPUT	S			
Pad Elevation	on:	0.5		Site condition	is HARD SI	TE				
Road Elevat	ion:	0			F	LEET MIX				
Observer He	eight (above gr	ade): 0		Туре	Day	Evening	Night	Daily		
Barrier Heig	ht:	0		Auto	0.775	0.129	0.096	0.9742		
Rt View:	90	Lft View:	-90	Med. Truck	0.848	0.049	0.103	0.0184		
NC	DISE SOURCE	ELEVATIONS (Feet)		Heavy Truck	0.865	0.027	0.108	0.0074		
Autos:		0								

UNMITIGATED NOISE LEVELS (No topographic or barrier attenuation)							
Vehicle Type	Peak Leq	Leq Day	Leq Evening	Leq Night	Ldn	CNEL	
Autos:	56.2	65.0	63.2	57.2	65.8	66.4	
Medium Trucks:	66.0	57.9	51.5	49.9	58.4	58.7	
Heavy Trucks:	71.2	59.2	50.2	51.4	61.3	61.4	
Vehicle Noise:	73.6	67.0	63.8	59.1	67.7	68.1	

2.3

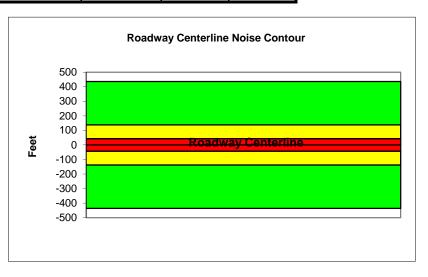
MITIGATED NOISE LEVELS (With topographic or barrier attenuation)								
Vehicle Type	Peak Leq	Leq Day	Leq Evening	Leq Night	Ldn	CNEL		
Autos:								
Medium Trucks:								
Heavy Trucks:								
Vehicle Noise:								

CENTERLINE NOISE CONTOUR						
Unmitigated						
60 dBA	758					
65 dBA	240					
70 dBA	76					
Mitigated						
60 dBA						
65 dBA						
70 dBA						

Federal Highway Administration RD-77-108 Traffic Noise Prediction Model (CALVENO) Capitola General Plan Scenario: Existing Project Name: Ryan Chiene Analyst: Job #:

Roadway: 41st Street

Road Segment: Clares Street to Capitola Road


PROJECT	Γ DATA			5	SITE DATA		
Centerline Dist to Barrier	0		Road Grade:		0		
Barrier (0=wall, 1= berm):	0		Average Dail	y Traffic:	25284		
Receiver Barrier Dist:	0		Peak Hour Ti	raffic:	2528.4		
Centerline Dist. To Observer:	100		Vehicle Spee	ed:	35		
Barrier Near Lane CL Dist:	0		Centerline Se	eparation:	45		
Barrier Far lane CL Dist:	0			NC	ISE INPUT	S	
Pad Elevation:	0.5		Site condition	ns HARD S I	TE		
Road Elevation:	0			F	LEET MIX		
Observer Height (above grade): 0		Туре	Day	Evening	Night	Daily
Barrier Height:	0		Auto	0.775	0.129	0.096	0.9742
Rt View: 90	Lft View:	-90	Med. Truck	0.848	0.049	0.103	0.0184
NOISE SOURCE EL	EVATIONS (Feet)		Heavy Truck	0.865	0.027	0.108	0.0074

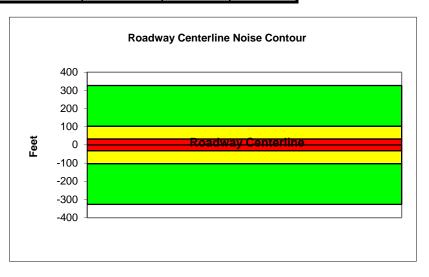
Autos: 0 2.3 Medium Trucks: Heavy Trucks: 8

UNMITIGATED NOISE LEVELS (No topographic or barrier attenuation)							
Vehicle Type	Peak Leq	Leq Day	Leq Evening	Leq Night	Ldn	CNEL	
Autos:	53.7	62.5	60.7	54.6	63.3	63.9	
Medium Trucks:	63.4	55.4	49.0	47.4	55.9	56.1	
Heavy Trucks:	68.6	56.7	47.6	48.9	58.8	58.9	
Vehicle Noise:	71.1	64.4	61.3	56.6	65.1	65.6	

MITIGATED NOISE LEVELS (With topographic or barrier attenuation)								
Vehicle Type	Peak Leq	Leq Day	Leq Evening	Leq Night	Ldn	CNEL		
Autos:								
Medium Trucks:								
Heavy Trucks:								
Vehicle Noise:								

CENTERLINE NOIS	SE CONTOUR
Unmitigated	
60 dBA	436
65 dBA	138
70 dBA	44
Mitigated	
60 dBA	
65 dBA	
70 dBA	

70-100329


Federal Highway Administration RD-77-108 **Traffic Noise Prediction Model (CALVENO)** Capitola General Plan Project Name: Scenario: Existing Analyst: Ryan Chiene Job #: 70-100329 Roadway: 41st Street Road Segment: Capitola Road to Jade Street PROJECT DATA SITE DATA Centerline Dist to Barrier 0 Road Grade: 0 Barrier (0=wall, 1= berm): 0 Average Daily Traffic: 18977 Receiver Barrier Dist: Peak Hour Traffic: 1897.7 0 Centerline Dist. To Observer: Vehicle Speed: 100 35 Barrier Near Lane CL Dist: 0 Centerline Separation: 34 **NOISE INPUTS** Barrier Far lane CL Dist: 0 Site conditions HARD SITE Pad Elevation: 0.5 FLEET MIX Road Elevation: 0 Observer Height (above grade): 0 Day Evening Night Daily Type 0.9742 Barrier Height: 0 Auto 0.775 0.129 0.096

Rt View: 90 Lft View: -90 Med. Truck 0.848 0.049 0.103 **NOISE SOURCE ELEVATIONS (Feet)** Heavy Truck 0.865 0.027 0.108 Autos: Medium Trucks: 2.3 Heavy Trucks: 8

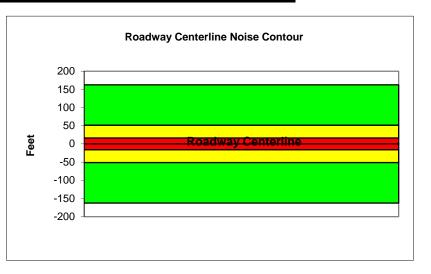
UNMITIGATED NOISE LEVELS (No topographic or barrier attenuation)							
Vehicle Type	Peak Leq	Leq Day	Leq Evening	Leq Night	Ldn	CNEL	
Autos:	52.6	61.4	59.6	53.5	62.2	62.8	
Medium Trucks:	62.3	54.3	47.9	46.3	54.8	55.0	
Heavy Trucks:	67.6	55.6	46.6	47.8	57.7	57.8	
Vehicle Noise:	70.0	63.4	60.2	55.5	64.1	64.5	

MITIGATED NOISE LEVELS (With topographic or barrier attenuation)								
Vehicle Type	Peak Leq	Leq Day	Leq Evening	Leq Night	Ldn	CNEL		
Autos:								
Medium Trucks:								
Heavy Trucks:								
Vehicle Noise:								

CENTERLINE NOIS	SE CONTOUR
Unmitigated	
60 dBA	327
65 dBA	103
70 dBA	33
Mitigated	
60 dBA	
65 dBA	
70 dBA	

0.0184

0.0074

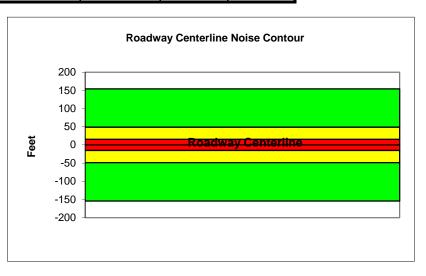

Federal Highway Administration RD-77-108 **Traffic Noise Prediction Model (CALVENO)** Project Name: Capitola General Plan Scenario: Existing Analyst: Ryan Chiene Job #: 70-100329 Roadway: 41st Street Road Segment: Jade Street to City Limits PROJECT DATA SITE DATA Centerline Dist to Barrier 0 Road Grade: 0 Barrier (0=wall, 1= berm): 0 Average Daily Traffic: 18977 Receiver Barrier Dist: Peak Hour Traffic: 1897.7 0 Centerline Dist. To Observer: Vehicle Speed: 100 25 Barrier Near Lane CL Dist: 0 Centerline Separation: 24 **NOISE INPUTS** Barrier Far lane CL Dist: 0 Site conditions HARD SITE Pad Elevation: 0.5 FLEET MIX Road Elevation: 0 Observer Height (above grade): 0 Day Evening Night Daily Type Barrier Height: 0.9742 0 Auto 0.775 0.129 0.096 Rt View: 90 Lft View: -90 Med. Truck 0.848 0.049 0.103 0.0184 **NOISE SOURCE ELEVATIONS (Feet)** Heavy Truck 0.865 0.027 0.108 0.0074 Autos: Medium Trucks: 2.3

UNMITIG	UNMITIGATED NOISE LEVELS (No topographic or barrier attenuation)							
Vehicle Type	Peak Leq	Leq Day	Leq Evening	Leq Night	Ldn	CNEL		
Autos:	48.6	57.4	55.6	49.5	58.1	58.8		
Medium Trucks:	60.2	52.2	45.8	44.2	52.7	52.9		
Heavy Trucks:	66.4	54.5	45.4	46.6	57.0	57.1		
Vehicle Noise:	69.1	60.6	56.6	52.7	61.3	61.7		

8

MITIGATED NOISE LEVELS (With topographic or barrier attenuation)								
Vehicle Type	Peak Leq	Leq Day	Leq Evening	Leq Night	Ldn	CNEL		
Autos:								
Medium Trucks:								
Heavy Trucks:								
Vehicle Noise:								

CENTERLINE NOISE CONTOUR							
Unmitigated							
60 dBA	163						
65 dBA	51						
70 dBA	16						
Mitigated							
60 dBA							
65 dBA							
70 dBA	_						

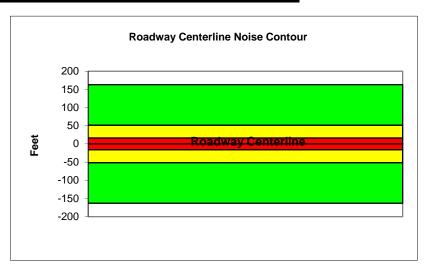


		Federal Highwa						
		Traffic Noise P	redict	ion Model (C	ALVENO)			
Project Name:	Capitola Ge	eneral Plan			Scenario:	Existing		
Analyst:	Ryan Chier	ne			Job #:	70-100329		
Roadway:	Capitola Ro	oad						
Road Segment:	City Limits	to Clares Street						
	PROJECT	DATA			5	SITE DATA		
Centerline Dist to	Barrier	0		Road Grade:		0		
Barrier (0=wall, 1=	= berm):	0		Average Dail	y Traffic:	18009		
Receiver Barrier I	Dist:	0		Peak Hour Traffic: 1800.9				
Centerline Dist. T	o Observer:	100		Vehicle Speed: 25				
Barrier Near Lane	CL Dist:	0		Centerline Se	eparation:	36		
Barrier Far lane C	L Dist:	0			NO	ISE INPUT	S	
Pad Elevation:		0.5		Site condition	ns HARD S I	TE		
Road Elevation:		0			F	LEET MIX		
Observer Height ((above grade):	. 0		Туре	Day	Evening	Night	Daily
Barrier Height:		0		Auto	0.775	0.129	0.096	0.9742
Rt View: 9	0	Lft View:	-90	90 Med. Truck 0.848 0.049 0.103 0.01				0.0184
NOISE SOURCE ELEVATIONS (Feet)				Heavy Truck	0.865	0.027	0.108	0.0074
Autos:		0						
Medium Trucks:		2.3						

UNMITIGATED NOISE LEVELS (No topographic or barrier attenuation)									
Vehicle Type	Peak Leq	Leq Day	Leq Evening	Leq Night	Ldn	CNEL			
Autos:	48.2	56.9	55.2	49.1	57.7	58.3			
Medium Trucks:	59.8	51.7	45.4	43.8	52.3	52.5			
Heavy Trucks:	66.0	54.0	45.0	46.2	56.6	56.7			
Vehicle Noise:	68.6	60.2	56.1	52.3	60.8	61.2			

MITIGATED NOISE LEVELS (With topographic or barrier attenuation)									
Vehicle Type Peak Leq Leq Day Leq Evening Leq Night Ldn CN									
Autos:									
Medium Trucks:									
Heavy Trucks:									
Vehicle Noise:									

CENTERLINE NOISE CONTOUR							
Unmitigated							
60 dBA	154						
65 dBA	49						
70 dBA	15						
Mitigated							
60 dBA							
65 dBA							
70 dBA							



		Federal Highw Traffic Noise F						
Project Name:	Capitola Ge	neral Plan		-	Scenario:	Existing		
Analyst:	Ryan Chien	е			Job #:	70-100329		
Roadway:	Capitola Ro	ad						
Road Segment:	Clares Stree	et to 41st Ave						
	PROJECT	DATA			5	SITE DATA		
Centerline Dist to	Barrier	0		Road Grade:		0		
Barrier (0=wall, 1=	= berm):	0		Average Dail	y Traffic:	19022		
Receiver Barrier [Dist:	0		Peak Hour Traffic: 1902.2				
Centerline Dist. To	o Observer:	100		Vehicle Speed: 25				
Barrier Near Lane	CL Dist:	0		Centerline Separation: 38				
Barrier Far lane C	L Dist:	0			NO	ISE INPUT	S	
Pad Elevation:		0.5		Site condition	ns HARD S I	TE		
Road Elevation:		0			F	LEET MIX		
Observer Height (above grade):	0		Туре	Day	Evening	Night	Daily
Barrier Height:		0		Auto	0.775	0.129	0.096	0.9742
Rt View: 9	0	Lft View:	-90	-90 Med. Truck 0.848 0.049 0.103 0.0				
NOISE SOURCE ELEVATIONS (Feet)				Heavy Truck	0.865	0.027	0.108	0.0074
Autos:		0						
Medium Trucks:		2.3						

UNMITIG	UNMITIGATED NOISE LEVELS (No topographic or barrier attenuation)										
Vehicle Type	Peak Leq	Leq Day	Leq Evening	Leq Night	Ldn	CNEL					
Autos:	48.4	57.1	55.4	49.3	57.9	58.5					
Medium Trucks:	60.0	51.9	45.6	44.0	52.5	52.7					
Heavy Trucks:	66.2	54.2	45.2	46.4	56.8	56.9					
Vehicle Noise:	68.8	60.4	56.4	52.5	61.1	61.4					

MITIGATED NOISE LEVELS (With topographic or barrier attenuation)									
Vehicle Type Peak Leq Leq Day Leq Evening Leq Night Ldn CN									
Autos:									
Medium Trucks:									
Heavy Trucks:									
Vehicle Noise:									

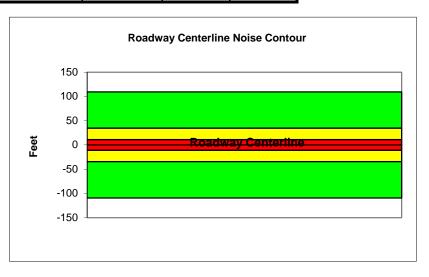
CENTERLINE NOISE CONTOUR							
Unmitigated							
60 dBA	163						
65 dBA	52						
70 dBA	16						
Mitigated							
60 dBA							
65 dBA							
70 dBA							

Federal Highway Administration RD-77-108 Traffic Noise Prediction Model (CALVENO)								
Project Name:	Capitola Genera	al Plan		,	Scenario:	Existing		
Analyst:	Ryan Chiene				Job #:	70-100329		
Roadway:	Capitola Road							
Road Segment:	41st Ave to 42n	d Ave						
	PROJECT DAT	ΓΑ			S	ITE DATA		
Centerline Dist to B	Barrier	0		Road Grade:		0		
Barrier (0=wall, 1=	berm):	0		Average Dail	y Traffic:	13036		
Receiver Barrier Dis	st:	0		Peak Hour Ti	affic:	1303.6		
Centerline Dist. To	Observer:	100		Vehicle Speed:		25		
Barrier Near Lane (CL Dist:	0		Centerline Separation: 42				
Barrier Far lane CL	Dist:	0			NO	ISE INPUT	S	
Pad Elevation:		0.5		Site condition	is HARD S I	TE		
Road Elevation:		0			F	LEET MIX		
Observer Height (a	bove grade):	0		Туре	Day	Evening	Night	Daily
Barrier Height:		0		Auto	0.775	0.129	0.096	0.9742
Rt View: 90	Lft '	√iew:	-90	Med. Truck	0.848	0.049	0.103	0.0184
NOISE SO	OURCE ELEVAT	TIONS (Feet)		Heavy Truck	0.865	0.027	0.108	0.0074
Autos:		0						
Medium Trucks:		2.3						
Heavy Trucks:		8						

UNMITIGATED NOISE LEVELS (No topographic or barrier attenuation)									
Vehicle Type Peak Leq Leq Day Leq Evening Leq Night Ldn									
Autos:	46.7	55.4	53.7	47.6	56.2	56.8			
Medium Trucks:	58.3	50.2	43.9	42.3	50.8	51.0			
Heavy Trucks:	64.5	52.5	43.5	44.7	55.1	55.2			
Vehicle Noise:	67.1	58.7	54.7	50.8	59.3	59.7			

MITIGATED NOISE LEVELS (With topographic or barrier attenuation)									
Vehicle Type Peak Leq Leq Day Leq Evening Leq Night Ldn CN									
Autos:									
Medium Trucks:									
Heavy Trucks:									
Vehicle Noise:									

CENTERLINE NOISE CONTOUR							
Unmitigated							
60 dBA	112						
65 dBA	35						
70 dBA	11						
Mitigated							
60 dBA							
65 dBA							
70 dBA							

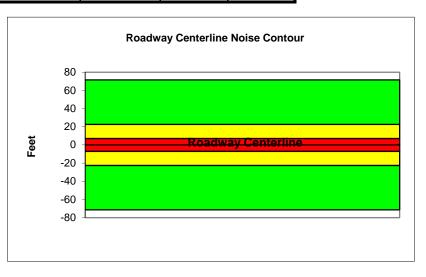


	Federal Highway Administration RD-77-108 Traffic Noise Prediction Model (CALVENO)								
Project Name:	Capitola General Pla	an	-	Scenario:	Existing				
Analyst:	Ryan Chiene			Job #:	70-100329				
Roadway:	Capitola Road								
Road Segment:	46th Ave to 49th Ave	Э							
	PROJECT DATA			S	SITE DATA				
Centerline Dist to B	Sarrier	0	Road Grade:		0				
Barrier (0=wall, 1=	berm):	0	Average Dail	y Traffic:	12771				
Receiver Barrier Dis	st:	0	Peak Hour T	raffic:	1277.1				
Centerline Dist. To	Observer: 1	00	Vehicle Speed:		25				
Barrier Near Lane (CL Dist:	0	Centerline Separation: 20						
Barrier Far lane CL	Dist:	0		NO	ISE INPUT	S			
Pad Elevation:		0.5	Site condition	ns HARD SI	TE				
Road Elevation:		0		F	LEET MIX				
Observer Height (a	bove grade):	0	Туре	Day	Evening	Night	Daily		
Barrier Height:		0	Auto	0.775	0.129	0.096	0.9742		
Rt View: 90	Lft View	: -90	Med. Truck	0.848	0.049	0.103	0.0184		
NOISE SO	OURCE ELEVATION	S (Feet)	Heavy Truck	0.865	0.027	0.108	0.0074		
Autos:		0							
Medium Trucks:	:	2.3							
Heavy Trucks:		8							

UNMITIGATED NOISE LEVELS (No topographic or barrier attenuation)										
Vehicle Type	Peak Leq	Leq Day	Leq Evening	Leq Night	Ldn	CNEL				
Autos:	46.9	55.7	53.9	47.9	56.5	57.1				
Medium Trucks:	58.6	50.5	44.1	42.6	51.1	51.3				
Heavy Trucks:	64.7	52.8	43.7	45.0	55.4	55.5				
Vehicle Noise:	67.4	59.0	54.9	51.1	59.6	60.0				

MITIGATED NOISE LEVELS (With topographic or barrier attenuation)										
Vehicle Type Peak Leq Leq Day Leq Evening Leq Night Ldn CNE										
Autos:										
Medium Trucks:										
Heavy Trucks:										
Vehicle Noise:										

CENTERLINE NOISE CONTOUR							
Unmitigated							
60 dBA	110						
65 dBA	35						
70 dBA	11						
Mitigated							
60 dBA							
65 dBA							
70 dBA							

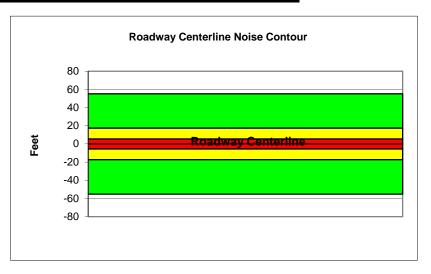


	Federal Highway Administration RD-77-108 Traffic Noise Prediction Model (CALVENO)									
Project Name:	Capitola Genera	al Plan		,	Scenario:	Existing				
Analyst:	Ryan Chiene				Job #:	70-100329				
Roadway:	Capitola Road									
Road Segment:	49th Ave to Wha	arf Road								
	PROJECT DAT	Α			S	SITE DATA				
Centerline Dist to B	Barrier	0		Road Grade:		0				
Barrier (0=wall, 1=	berm):	0		Average Dail	y Traffic:	8334				
Receiver Barrier Di	st:	0		Peak Hour Ti	affic:	833.4				
Centerline Dist. To	Observer:	100		Vehicle Speed:		25				
Barrier Near Lane (CL Dist:	0		Centerline Separation: 22						
Barrier Far lane CL	Dist:	0			NO	ISE INPUT	S			
Pad Elevation:		0.5		Site condition	is HARD SI	TE				
Road Elevation:		0			F	LEET MIX				
Observer Height (a	bove grade):	0		Туре	Day	Evening	Night	Daily		
Barrier Height:		0		Auto	0.775	0.129	0.096	0.9742		
Rt View: 90	Lft \	/iew:	-90	Med. Truck	0.848	0.049	0.103	0.0184		
NOISE SO	OURCE ELEVAT	IONS (Feet)		Heavy Truck	0.865	0.027	0.108	0.0074		
Autos:		0								
Medium Trucks:		2.3								
Heavy Trucks:		8								

UNMITIG	UNMITIGATED NOISE LEVELS (No topographic or barrier attenuation)										
Vehicle Type	Peak Leq	Leq Day	Leq Evening	Leq Night	Ldn	CNEL					
Autos:	45.1	53.8	52.0	46.0	54.6	55.2					
Medium Trucks:	56.7	48.6	42.2	40.7	49.2	49.4					
Heavy Trucks:	62.9	50.9	41.9	43.1	53.5	53.6					
Vehicle Noise:	65.5	57.1	53.0	49.2	57.7	58.1					

MITIGATED NOISE LEVELS (With topographic or barrier attenuation)									
Vehicle Type Peak Leq Leq Day Leq Evening Leq Night Ldn CNE									
Autos:									
Medium Trucks:									
Heavy Trucks:									
Vehicle Noise:									

CENTERLINE NOISE CONTOUR							
Unmitigated							
60 dBA	71						
65 dBA	23						
70 dBA	7						
Mitigated							
60 dBA							
65 dBA							
70 dBA							

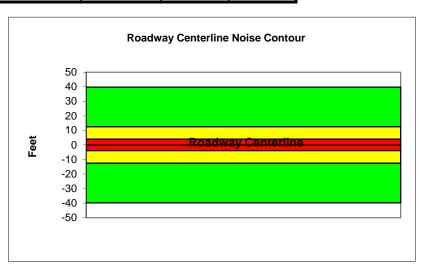


Federal Highway Administration RD-77-108 Traffic Noise Prediction Model (CALVENO)								
Project Name:	Capitola Gene			`		Existing		
Analyst:	Ryan Chiene				Job #:	70-100329		
Roadway:	Clares Street							
Road Segment:	40th Ave to 4	1st Ave						
	PROJECT D	ATA			S	SITE DATA		
Centerline Dist to E	Barrier	0		Road Grade:		0		
Barrier (0=wall, 1=	berm):	0		Average Dail	y Traffic:	6440		
Receiver Barrier D	ist:	0		Peak Hour Ti	raffic:	644		
Centerline Dist. To	Observer:	100		Vehicle Speed: 25				
Barrier Near Lane	CL Dist:	0		Centerline Se	eparation:	26		
Barrier Far lane CL	Dist:	0			NO	ISE INPUT	S	
Pad Elevation:		0.5		Site condition	ns HARD SI	TE		
Road Elevation:		0			F	LEET MIX		
Observer Height (a	bove grade):	0		Туре	Day	Evening	Night	Daily
Barrier Height:		0		Auto	0.775			0.9742
Rt View: 90) Li	ft View:	-90	Med. Truck	0.848	0.049	0.103	0.0184
NOISE S	OURCE ELEV	ATIONS (Feet)		Heavy Truck	0.865	0.027	0.108	0.0074
Autos:		0						
Medium Trucks:		2.3						
Heavy Trucks:		8						

UNMITIGATED NOISE LEVELS (No topographic or barrier attenuation)										
Vehicle Type Peak Leq Leq Day Leq Evening Leq Night Ldn										
Autos:	43.9	52.6	50.9	44.8	53.4	54.0				
Medium Trucks:	55.5	47.4	41.1	39.5	48.0	48.2				
Heavy Trucks:	61.7	49.7	40.7	41.9	52.3	52.4				
Vehicle Noise:	64.3	55.9	51.8	48.0	56.5	56.9				

MITIGATED NOISE LEVELS (With topographic or barrier attenuation)										
Vehicle Type Peak Leq Leq Day Leq Evening Leq Night Ldn CN										
Autos:										
Medium Trucks:										
Heavy Trucks:										
Vehicle Noise:										

CENTERLINE NOIS	CENTERLINE NOISE CONTOUR						
Unmitigated							
60 dBA	55						
65 dBA	17						
70 dBA	6						
Mitigated							
60 dBA							
65 dBA							
70 dBA							

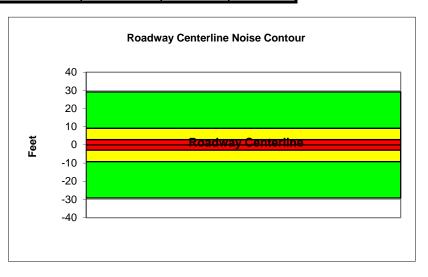


		eral Highway Adr fic Noise Predict					
Project Name:	Capitola General Pla		,	Scenario:	Existing		
Analyst:	Ryan Chiene			Job #:	70-100329	1	
Roadway:	Clares Street						
Road Segment:	41st Ave to 42nd Ave	е					
	PROJECT DATA			5	ITE DATA		
Centerline Dist to B	Barrier	0	Road Grade:		0		
Barrier (0=wall, 1=	berm):	0	Average Dail	y Traffic:	4640		
Receiver Barrier Di	st:	0	Peak Hour Ti	raffic:	464		
Centerline Dist. To	Observer: 1	00	Vehicle Speed:		25		
Barrier Near Lane (CL Dist:	0	Centerline Se	eparation:	26		
Barrier Far lane CL	Dist:	0	NOISE INPUTS				
Pad Elevation:	().5	Site condition	ns HARD SI	TE		
Road Elevation:		0		F	LEET MIX		
Observer Height (a	bove grade):	0	Туре	Day	Evening	Night	Daily
Barrier Height:		0	Auto	0.775	0.129	0.096	0.9742
Rt View: 90	Lft View:	-90	Med. Truck	0.848	0.049	0.103	0.0184
NOISE SO	OURCE ELEVATION	S (Feet)	Heavy Truck	0.865	0.027	0.108	0.0074
Autos:		0					
Medium Trucks:	2	2.3					
Heavy Trucks:		8					

UNMITIGATED NOISE LEVELS (No topographic or barrier attenuation)						
Vehicle Type	Peak Leq	Peak Leq Leq Day Leq Evening Leq Night Ldn (
Autos:	42.4	51.2	49.4	43.3	52.0	52.6
Medium Trucks:	54.1	46.0	39.6	38.1	46.6	46.8
Heavy Trucks:	60.2	48.3	39.2	40.5	50.9	51.0
Vehicle Noise:	62.9	54.5	50.4	46.6	55.1	55.5

MITIGATED NOISE LEVELS (With topographic or barrier attenuation)						
Vehicle Type	Peak Leq	Leq Day	Leq Evening	Leq Night	Ldn	CNEL
Autos:						
Medium Trucks:						
Heavy Trucks:						
Vehicle Noise:						

CENTERLINE NOISE CONTOUR						
Unmitigated						
60 dBA	40					
65 dBA	13					
70 dBA	4					
Mitigated						
60 dBA						
65 dBA						
70 dBA						

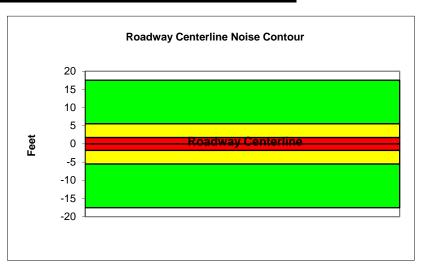


Federal Highway Administration RD-77-108 **Traffic Noise Prediction Model (CALVENO)** Project Name: Capitola General Plan Scenario: Existing Analyst: Ryan Chiene Job #: 70-100329 Roadway: Clares Street Road Segment: 46th Ave to Wharf Road PROJECT DATA SITE DATA Centerline Dist to Barrier 0 Road Grade: 0 Barrier (0=wall, 1= berm): 0 Average Daily Traffic: 3400 Receiver Barrier Dist: Peak Hour Traffic: 340 0 Centerline Dist. To Observer: Vehicle Speed: 25 100 Barrier Near Lane CL Dist: 0 Centerline Separation: 24 **NOISE INPUTS** Barrier Far lane CL Dist: 0 Site conditions HARD SITE Pad Elevation: 0.5 FLEET MIX Road Elevation: 0 Observer Height (above grade): 0 Day Evening Night Daily Type Barrier Height: 0.9742 0 Auto 0.775 0.129 0.096 Rt View: 90 Lft View: -90 Med. Truck 0.848 0.049 0.103 0.0184 **NOISE SOURCE ELEVATIONS (Feet)** Heavy Truck 0.865 0.027 0.108 0.0074 Autos: Medium Trucks: 2.3 Heavy Trucks: 8

UNMITIG	UNMITIGATED NOISE LEVELS (No topographic or barrier attenuation)							
Vehicle Type	Peak Leq	Leq Day	Leq Evening	Leq Night	Ldn	CNEL		
Autos:	41.1	49.9	48.1	42.0	50.7	51.3		
Medium Trucks:	52.8	44.7	38.3	36.7	45.2	45.5		
Heavy Trucks:	58.9	47.0	37.9	39.2	49.5	49.7		
Vehicle Noise:	61.6	53.2	49.1	45.3	53.8	54.2		

MITIGATED NOISE LEVELS (With topographic or barrier attenuation)						
Vehicle Type	Peak Leq	Leq Day	Leq Evening	Leq Night	Ldn	CNEL
Autos:						
Medium Trucks:						
Heavy Trucks:						
Vehicle Noise:						

CENTERLINE NOISE CONTOUR					
Unmitigated					
60 dBA	29				
65 dBA	9				
70 dBA	3				
Mitigated					
60 dBA					
65 dBA					
70 dBA					

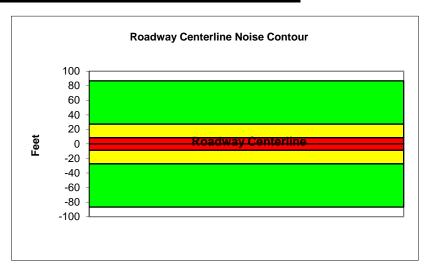


		ral Highway Adı ic Noise Predict					
Project Name:	Capitola General Pla		`	Scenario:	Existing		
Analyst:	Ryan Chiene			Job #:	70-100329		
Roadway:	Wharf Road						
Road Segment:	Clares Street to Capt	iola Road					
	PROJECT DATA			5	SITE DATA		
Centerline Dist to Ba	arrier	0	Road Grade:		0		
Barrier (0=wall, 1= b	erm):	0	Average Dail	y Traffic:	2048		
Receiver Barrier Dis	t:	0	Peak Hour Ti	raffic:	204.8		
Centerline Dist. To C	Observer: 10	00	Vehicle Speed:		25		
Barrier Near Lane C	L Dist:	0	Centerline Se	eparation:	24		
Barrier Far lane CL	Dist:	0	NOISE INPUTS				
Pad Elevation:	0	.5	Site conditions HARD SITE				
Road Elevation:		0	FLEET MIX				
Observer Height (ab	ove grade):	0	Туре	Day	Evening	Night	Daily
Barrier Height:		0	Auto	0.775	0.129	0.096	0.9742
Rt View: 90	Lft View:	-90	Med. Truck	0.848	0.049	0.103	0.0184
NOISE SO	URCE ELEVATIONS	6 (Feet)	Heavy Truck	0.865	0.027	0.108	0.0074
Autos:		0					
Medium Trucks:	2	.3					
Heavy Trucks:		8					

UNMITIG	UNMITIGATED NOISE LEVELS (No topographic or barrier attenuation)							
Vehicle Type	Peak Leq	Leq Day	Leq Evening	Leq Night	Ldn	CNEL		
Autos:	38.9	47.7	45.9	39.8	48.5	49.1		
Medium Trucks:	50.6	42.5	36.1	34.5	43.0	43.3		
Heavy Trucks:	56.7	44.8	35.7	36.9	47.3	47.5		
Vehicle Noise:	59.4	50.9	46.9	43.1	51.6	52.0		

MITIGATED NOISE LEVELS (With topographic or barrier attenuation)							
Vehicle Type	Peak Leq	Leq Day	Leq Evening	Leq Night	Ldn	CNEL	
Autos:							
Medium Trucks:							
Heavy Trucks:							
Vehicle Noise:							

CENTERLINE NOISE CONTOUR					
Unmitigated					
60 dBA	18				
65 dBA	6				
70 dBA	2				
Mitigated					
60 dBA					
65 dBA					
70 dBA					



		eral Highway Adr ic Noise Predict					
Project Name:	Capitola General Pla		,	Scenario:	Existing		
Analyst:	Ryan Chiene			Job #:	70-100329		
Roadway:	Wharf Road						
Road Segment:	Captiola Road to Clif	f Drive					
	PROJECT DATA			S	ITE DATA		
Centerline Dist to E	Barrier	0	Road Grade:		0		
Barrier (0=wall, 1=	berm):	0	Average Dail	y Traffic:	10129		
Receiver Barrier Di	st:	0	Peak Hour Ti	raffic:	1012.9		
Centerline Dist. To	Observer: 1	00	Vehicle Spee	ed:	25		
Barrier Near Lane (CL Dist:	0	Centerline Se	eparation:	24		
Barrier Far lane CL	Dist:	0		NO	ISE INPUT	S	
Pad Elevation:	().5	Site condition	ns HARD S I	TE		
Road Elevation:		0		FLEET MIX			
Observer Height (a	bove grade):	0	Туре	Day	Evening	Night	Daily
Barrier Height:		0	Auto	0.775	0.129	0.096	0.9742
Rt View: 90	Lft View:	-90	Med. Truck	0.848	0.049	0.103	0.0184
NOISE S	OURCE ELEVATION	S (Feet)	Heavy Truck	0.865	0.027	0.108	0.0074
Autos:		0					
Medium Trucks:	2	2.3					
Heavy Trucks:		8					

UNMITIGATED NOISE LEVELS (No topographic or barrier attenuation)									
Vehicle Type	Peak Leq	Leq Day	Leq Evening	Leq Night	Ldn	CNEL			
Autos:	45.9	54.6	52.9	46.8	55.4	56.0			
Medium Trucks:	57.5	49.4	43.1	41.5	50.0	50.2			
Heavy Trucks:	63.7	51.7	42.7	43.9	54.3	54.4			
Vehicle Noise:	66.3	57.9	53.8	50.0	58.5	58.9			

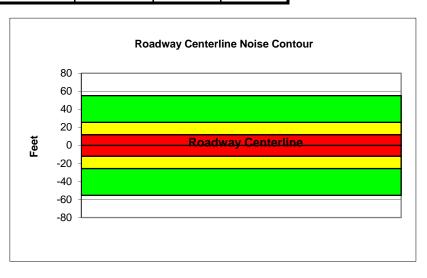
MITIGAT	MITIGATED NOISE LEVELS (With topographic or barrier attenuation)									
Vehicle Type	Peak Leq	Leq Day	Leq Evening	Leq Night	Ldn	CNEL				
Autos:										
Medium Trucks:										
Heavy Trucks:										
Vehicle Noise:										

CENTERLINE NOISE CONTOUR							
Unmitigated							
60 dBA	87						
65 dBA	27						
70 dBA	9						
Mitigated							
60 dBA							
65 dBA							
70 dBA							

Federal Highway Administration RD-77-108 Traffic Noise Prediction Model (CALVENO) Project Name: Capitola General Plan Scenario: Existing Analyst: Ryan Chiene Job #: 70-100329 Roadway: Cliff Drive

Road Segment: 47th Ave to Wharf Road

Heavy Trucks:

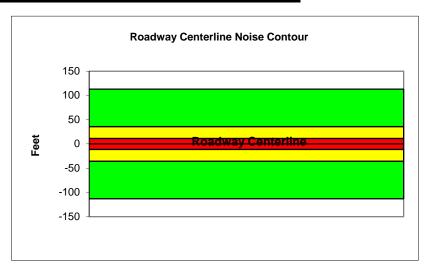

PROJECT	DATA			S	SITE DATA		
Centerline Dist to Barrier:	0		Road Grade:		0		
Barrier (0=wall, 1= berm):	0		Average Dail	y Traffic:	8923		
Receiver Barrier Dist:	0		Peak Hour T	raffic:	892.3		
Centerline Dist. To Observer:	100		Vehicle Spee	ed:	25		
Barrier Near Lane CL Dist:	0		Centerline Se	eparation:	22		
Barrier Far lane CL Dist:	0			NO	ISE INPUT	S	
Pad Elevation:	0.5		Site condition	ns: SOFT SI	ΤE		
Road Elevation:	0			F	LEET MIX		
Observer Height (above grade):	5.5		Type	Day	Evening	Night	Daily
Barrier Height:	0		Auto	0.775	0.129	0.096	0.9742
Rt View: 90	Lft View:	-90	Med. Truck	0.848	0.049	0.103	0.0184
NOISE SOURCE ELE	VATIONS (Feet)		Heavy Truck	0.865	0.027	0.108	0.0074
Autos:	0						·
Medium Trucks:	2.3						

UNMITIGATED NOISE LEVELS (No topographic or barrier attenuation)									
Vehicle Type	Peak Leq	Leq Day	Leq Evening	Leq Night	Ldn	CNEL			
Autos:	42.4	51.2	49.4	43.3	52.0	52.6			
Medium Trucks:	54.1	46.0	39.6	38.1	46.5	46.8			
Heavy Trucks:	60.2	48.3	39.2	40.5	50.8	51.0			
Vehicle Noise:	62.9	54.5	50.4	46.6	55.1	55.5			

8

MITIGATED NOISE LEVELS (With topographic or barrier attenuation)								
Vehicle Type	Peak Leq	Leq Day	Leq Evening	Leq Night	Ldn	CNEL		
Autos:								
Medium Trucks:								
Heavy Trucks:								
Vehicle Noise:								

55
26
12

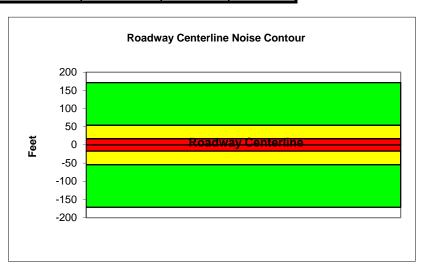


				ninistration F				
Project Name:	Capitola Gene			,	Scenario:	Existing		
Analyst:	Ryan Chiene				Job #:	70-100329		
Roadway:	Cliff Drive							
Road Segment:	Wharf Road to	Capitola A	ve					
	PROJECT DA	ΛTA			S	SITE DATA		
Centerline Dist to E	Barrier	0		Road Grade:		0		
Barrier (0=wall, 1=	berm):	0		Average Dail	y Traffic:	13179		
Receiver Barrier Di	st:	0		Peak Hour Tr	affic:	1317.9		
Centerline Dist. To	Observer:	100		Vehicle Spee	d:	25		
Barrier Near Lane (CL Dist:	0		Centerline Se	eparation:	22		
Barrier Far lane CL	Dist:	0			NO	ISE INPUT	S	
Pad Elevation:		0.5		Site condition	is HARD S I	TE		
Road Elevation:		0		FLEET MIX				
Observer Height (a	bove grade):	0		Туре	Day	Evening	Night	Daily
Barrier Height:		0		Auto	0.775	0.129	0.096	0.9742
Rt View: 90	Lft	t View:	-90	Med. Truck	0.848	0.049	0.103	0.0184
NOISE S	OURCE ELEV <i>A</i>	ATIONS (Fe	eet)	Heavy Truck	0.865	0.027	0.108	0.0074
Autos:		0						
Medium Trucks:		2.3						
Heavy Trucks:		8						

UNMITIG	UNMITIGATED NOISE LEVELS (No topographic or barrier attenuation)									
Vehicle Type	Peak Leq	Leq Day	Leq Evening	Leq Night	Ldn	CNEL				
Autos:	47.0	55.8	54.0	48.0	56.6	57.2				
Medium Trucks:	58.7	50.6	44.2	42.7	51.2	51.4				
Heavy Trucks:	64.8	52.9	43.8	45.1	55.5	55.6				
Vehicle Noise:	67.5	59.1	55.0	51.2	59.7	60.1				

MITIGATED NOISE LEVELS (With topographic or barrier attenuation)								
Vehicle Type	Peak Leq	Leq Day	Leq Evening	Leq Night	Ldn	CNEL		
Autos:								
Medium Trucks:								
Heavy Trucks:								
Vehicle Noise:								

CENTERLINE NOISE CONTOUR							
Unmitigated							
60 dBA	113						
65 dBA	36						
70 dBA	11						
Mitigated							
60 dBA							
65 dBA							
70 dBA							

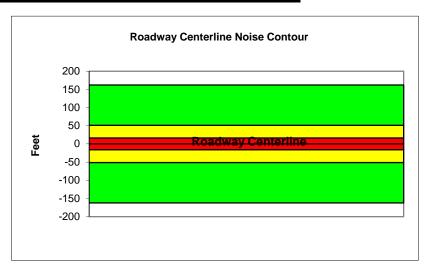


	Federal Highway Adm							
		Traffic Noise	Predicti	on Model (C	ALVENO)			
Project Name: Capitola General Plan			Scenario: Existing					
Analyst:	nalyst: Ryan Chiene			Job #: 70-100329				
Roadway:	Bay Avenue)						
Road Segment:	NB SR-1 Ra	amps to Hill Street	<u> </u>					
PROJECT DATA				SITE DATA				
Centerline Dist to	Barrier	0		Road Grade:		0		
Barrier (0=wall, 1=	= berm):	0		Average Dail	y Traffic:	19990		
Receiver Barrier Dist: 0			Peak Hour Traffic:		1999			
Centerline Dist. To Observer: 100		Vehicle Speed: 25						
Barrier Near Lane CL Dist: 0		Centerline Separation:		34				
Barrier Far lane C	L Dist:	0			NC	ISE INPUT	S	
Pad Elevation:		0.5		Site condition	ns HARD S I	TE		
Road Elevation: 0		FLEET MIX						
Observer Height ((above grade):	0		Туре	Day	Evening	Night	Daily
Barrier Height:		0		Auto	0.775	0.129	0.096	0.9742
Rt View: 9	0	Lft View:	-90	Med. Truck	0.848	0.049	0.103	0.0184
NOISE SOURCE ELEVATIONS (Feet)			Heavy Truck	0.865	0.027	0.108	0.0074	
Autos:		0						
Medium Trucks:		2.3						

UNMITIGATED NOISE LEVELS (No topographic or barrier attenuation)						1)
Vehicle Type	Peak Leq	Leq Day	Leq Evening	Leq Night	Ldn	CNEL
Autos:	48.6	57.4	55.6	49.6	58.2	58.8
Medium Trucks:	60.3	52.2	45.8	44.3	52.8	53.0
Heavy Trucks:	66.4	54.5	45.5	46.7	57.1	57.2
Vehicle Noise:	69.1	60.7	56.6	52.8	61.3	61.7

MITIGATED NOISE LEVELS (With topographic or barrier attenuation))
Vehicle Type	Peak Leq	Leq Day	Leq Evening	Leq Night	Ldn	CNEL
Autos:						
Medium Trucks:						
Heavy Trucks:						
Vehicle Noise:						

CENTERLINE NOISE CONTOUR				
Unmitigated				
60 dBA	172			
65 dBA	54			
70 dBA	17			
Mitigated				
60 dBA				
65 dBA				
70 dBA				



	Federal Highway Administration RD-77-108							
		Traffic Noise P	redict	ion Model (C	ALVENO)			
Project Name:	Capitola Ge	eneral Plan			Scenario:	Existing		
Analyst:	Ryan Chier	ne			Job #:	70-100329		
Roadway:	Bay Avenue	Э						
Road Segment:	Hill Street to	o Capitola Ave						
	PROJECT	DATA			5	SITE DATA		
Centerline Dist to	Barrier	0		Road Grade:		0		
Barrier (0=wall, 1=	= berm):	0		Average Dail	y Traffic:	18922		
Receiver Barrier [Dist:	0		Peak Hour Traffic:		1892.2		
Centerline Dist. T	o Observer:	100		Vehicle Speed:		25		
Barrier Near Lane	CL Dist:	0		Centerline Se	eparation:	34		
Barrier Far lane C	CL Dist:	0			NC	ISE INPUT	S	
Pad Elevation:		0.5		Site condition	ns HARD S I	TE		
Road Elevation:		0			F	LEET MIX		
Observer Height ((above grade)	0		Туре	Day	Evening	Night	Daily
Barrier Height:		0		Auto	0.775	0.129	0.096	0.9742
Rt View: 9	00	Lft View:	-90	Med. Truck	0.848	0.049	0.103	0.0184
NOISE SOURCE ELEVATIONS (Feet)			Heavy Truck	0.865	0.027	0.108	0.0074	
Autos:		0						
Medium Trucks:		2.3						

UNMITIGATED NOISE LEVELS (No topographic or barrier attenuation)								
Vehicle Type	Peak Leq	Leq Day	Leq Evening	Leq Night	Ldn	CNEL		
Autos:	48.4	57.2	55.4	49.3	58.0	58.6		
Medium Trucks:	60.1	52.0	45.6	44.0	52.5	52.8		
Heavy Trucks:	66.2	54.3	45.2	46.4	56.8	57.0		
Vehicle Noise:	68.9	60.4	56.4	52.6	61.1	61.5		

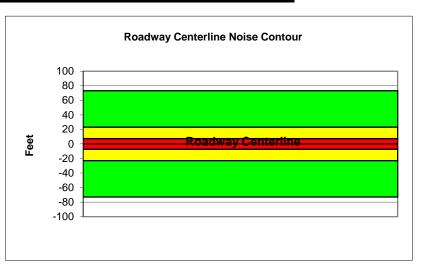
MITIGATED NOISE LEVELS (With topographic or barrier attenuation)									
Vehicle Type Peak Leq Leq Day Leq Evening Leq Night Ldn Cl									
Autos:									
Medium Trucks:									
Heavy Trucks:									
Vehicle Noise:									

CENTERLINE NOISE CONTOUR							
Unmitigated							
60 dBA	162						
65 dBA	51						
70 dBA	16						
Mitigated							
60 dBA							
65 dBA							
70 dBA							

Federal Highway Administration RD-77-108 **Traffic Noise Prediction Model (CALVENO)** Capitola General Plan Project Name: Scenario: Existing Analyst: Ryan Chiene Job #: 70-100329 Roadway: Bay Avenue Road Segment: Capitola Ave to Monterey Ave PROJECT DATA SITE DATA Centerline Dist to Barrier 0 Road Grade: 0 Barrier (0=wall, 1= berm): 0 Average Daily Traffic: 8506 Receiver Barrier Dist: Peak Hour Traffic: 850.6 0 Centerline Dist. To Observer: Vehicle Speed: 100 25 Barrier Near Lane CL Dist: 0 Centerline Separation: 24 **NOISE INPUTS** Barrier Far lane CL Dist: 0 Site conditions HARD SITE Pad Elevation: 0.5 Road Elevation: 0 **FLEET MIX** Observer Height (above grade): 0 Day Evening Night Daily Type 0.9742 Barrier Height: 0 Auto 0.775 0.129 0.096 Rt View: 90 Lft View: -90 Med. Truck 0.848 0.049 0.103 0.0184 **NOISE SOURCE ELEVATIONS (Feet)** Heavy Truck 0.865 0.027 0.108 0.0074

Medium Trucks:

Heavy Trucks:

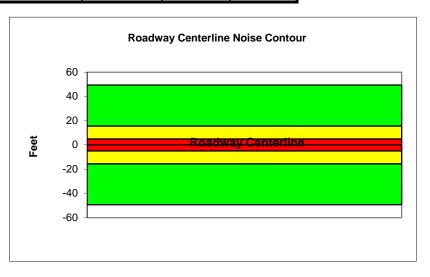

UNMITIGATED NOISE LEVELS (No topographic or barrier attenuation)

UNMITIG	UNMITIGATED NOISE LEVELS (No topographic or barrier attenuation)								
Vehicle Type	Peak Leq	Leq Day	Leq Evening	Leq Night	Ldn	CNEL			
Autos:	45.1	53.9	52.1	46.0	54.7	55.3			
Medium Trucks:	56.8	48.7	42.3	40.7	49.2	49.5			
Heavy Trucks:	62.9	51.0	41.9	43.1	53.5	53.6			
Vehicle Noise:	65.6	57.1	53.1	49.3	57.8	58.2			

MITIGATED NOISE LEVELS (With topographic or barrier attenuation)								
Vehicle Type	Type Peak Leq Leq Day Leq Evening Leq Night Ldn CN							
Autos:								
Medium Trucks:								
Heavy Trucks:								
Vehicle Noise:								

CENTERLINE NOISE CONTOUR							
Unmitigated							
60 dBA	73						
65 dBA	23						
70 dBA	7						
Mitigated							
60 dBA							
65 dBA							
70 dBA							

Autos:



	Federal Highway Administration RD-77-108 Traffic Noise Prediction Model (CALVENO)									
Project Name:	Capitola Gener	al Plan		•	Scenario:	Existing				
Analyst:	Ryan Chiene				Job #:	70-100329				
Roadway:	Capitola Avenu	е								
Road Segment:	Bay Ave to Rive	erview Drive								
	PROJECT DA	ΓΑ			S	ITE DATA				
Centerline Dist to B	Barrier	0		Road Grade:		0				
Barrier (0=wall, 1=	berm):	0		Average Dail	y Traffic:	5750				
Receiver Barrier Di	st:	0		Peak Hour Ti	affic:	575				
Centerline Dist. To	Observer:	100		Vehicle Speed: 25						
Barrier Near Lane (CL Dist:	0		Centerline Se	eparation:	24				
Barrier Far lane CL	Dist:	0			NO	ISE INPUT	S			
Pad Elevation:		0.5		Site condition	is HARD S I	TE				
Road Elevation:		0			F	LEET MIX				
Observer Height (a	bove grade):	0		Туре	Day	Evening	Night	Daily		
Barrier Height:		0		Auto	0.775	0.129	0.096	0.9742		
Rt View: 90	Lft '	View:	-90	Med. Truck	0.848	0.049	0.103	0.0184		
NOISE SO	OURCE ELEVA	TIONS (Feet)		Heavy Truck	0.865	0.027	0.108	0.0074		
Autos:		0								
Medium Trucks:		2.3								
Heavy Trucks:		8								

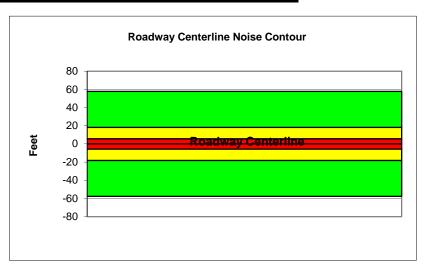
UNMITIGATED NOISE LEVELS (No topographic or barrier attenuation)								
Vehicle Type	Peak Leq	Leq Day	Leq Evening	Leq Night	Ldn	CNEL		
Autos:	43.4	52.2	50.4	44.3	53.0	53.6		
Medium Trucks:	55.1	47.0	40.6	39.0	47.5	47.8		
Heavy Trucks:	61.2	49.3	40.2	41.4	51.8	51.9		
Vehicle Noise:	63.9	55.4	51.4	47.6	56.1	56.5		

MITIGATED NOISE LEVELS (With topographic or barrier attenuation)								
Vehicle Type	Type Peak Leq Leq Day Leq Evening Leq Night Ldn CN							
Autos:								
Medium Trucks:								
Heavy Trucks:								
Vehicle Noise:								

CENTERLINE NOISE CONTOUR							
Unmitigated							
60 dBA	49						
65 dBA	16						
70 dBA	5						
Mitigated							
60 dBA							
65 dBA							
70 dBA							

Federal Highway Administration RD-77-108 **Traffic Noise Prediction Model (CALVENO)** Project Name: Capitola General Plan Scenario: Existing Analyst: Ryan Chiene Job #: 70-100329 Roadway: Capitola Avenue Road Segment: Riverview Drive to Stockton Ave PROJECT DATA SITE DATA Centerline Dist to Barrier 0 Road Grade: 0 Barrier (0=wall, 1= berm): 0 Average Daily Traffic: 6728 Receiver Barrier Dist: Peak Hour Traffic: 672.8 0 Centerline Dist. To Observer: Vehicle Speed: 100 25 Barrier Near Lane CL Dist: 0 Centerline Separation: 24 **NOISE INPUTS** Barrier Far lane CL Dist: 0 Site conditions HARD SITE Pad Elevation: 0.5 FLEET MIX Road Elevation: 0 Observer Height (above grade): 0 Day Evening Night Daily Type Barrier Height: 0.9742 0 Auto 0.775 0.129 0.096 Rt View: 90 Lft View: -90 Med. Truck 0.848 0.049 0.103 0.0184 **NOISE SOURCE ELEVATIONS (Feet)** Heavy Truck 0.865 0.027 0.108 0.0074 Autos:

UNMITIGATED NOISE LEVELS (No topographic or barrier attenuation)								
Vehicle Type	Peak Leq	Leq Day	Leq Evening	Leq Night	Ldn	CNEL		
Autos:	44.1	52.9	51.1	45.0	53.6	54.3		
Medium Trucks:	55.7	47.7	41.3	39.7	48.2	48.4		
Heavy Trucks:	61.9	50.0	40.9	42.1	52.5	52.6		
Vehicle Noise:	64.5	56.1	52.1	48.2	56.8	57.2		

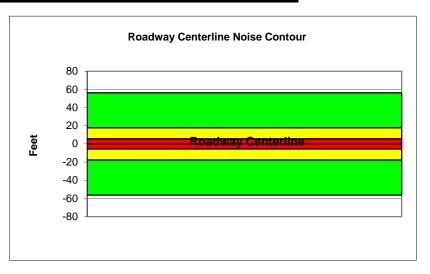

2.3

8

MITIGATED NOISE LEVELS (With topographic or barrier attenuation)											
Vehicle Type Peak Leq Leq Day Leq Evening Leq Night Ldn CNE											
Autos:											
Medium Trucks:											
Heavy Trucks:											
Vehicle Noise:											

CENTERLINE NOISE CONTOUR							
Unmitigated							
60 dBA	58						
65 dBA	18						
70 dBA	6						
Mitigated							
60 dBA							
65 dBA							
70 dBA							

Medium Trucks:

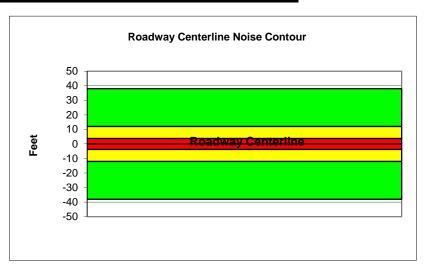


		Federal Highwa Traffic Noise P						
Project Name:	Capitola Ge	neral Plan		·	Scenario:	Existing		
Analyst:	Ryan Chien	е			Job #:	70-100329		
Roadway:	Capitola Av	enue						
Road Segment:	Stockton Av	e to Monterey Ave						
	PROJECT	DATA			5	SITE DATA		
Centerline Dist to	Barrier	0		Road Grade:		0		
Barrier (0=wall, 1=	= berm):	0		Average Dail	y Traffic:	6562		
Receiver Barrier [Dist:	0		Peak Hour Traffic:		656.2		
Centerline Dist. To	o Observer:	100		Vehicle Speed: 25				
Barrier Near Lane	CL Dist:	0		Centerline Separation: 22				
Barrier Far lane C	L Dist:	0			NO	ISE INPUT	S	
Pad Elevation:		0.5		Site condition	is HARD S I	TE		
Road Elevation:		0			F	LEET MIX		
Observer Height (above grade):	0		Туре	Day	Evening	Night	Daily
Barrier Height:		0		Auto	0.775	0.129	0.096	0.9742
Rt View: 9	0	Lft View:	-90	Med. Truck	0.848	0.049	0.103	0.0184
NOISE S		Heavy Truck	0.865	0.027	0.108	0.0074		
Autos:		0						
Medium Trucks:		2.3						

UNMITIG	UNMITIGATED NOISE LEVELS (No topographic or barrier attenuation)											
Vehicle Type	Peak Leq	Leq Day	Leq Evening	Leq Night	Ldn	CNEL						
Autos:	44.0	52.8	51.0	44.9	53.6	54.2						
Medium Trucks:	55.7	47.6	41.2	39.6	48.1	48.4						
Heavy Trucks:	61.8	49.9	40.8	42.0	52.4	52.6						
Vehicle Noise:	64.5	56.0	52.0	48.2	56.7	57.1						

MITIGATED NOISE LEVELS (With topographic or barrier attenuation)											
Vehicle Type Peak Leq Leq Day Leq Evening Leq Night Ldn CNE											
Autos:											
Medium Trucks:											
Heavy Trucks:											
Vehicle Noise:											

CENTERLINE NOISE CONTOUR							
Unmitigated							
60 dBA	56						
65 dBA	18						
70 dBA	6						
Mitigated							
60 dBA							
65 dBA							
70 dBA							

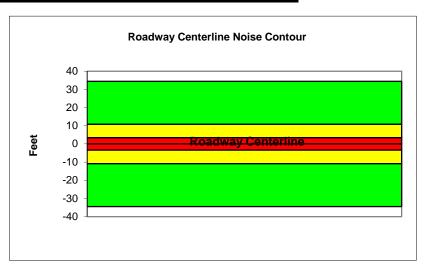


		Federal Highwa						
		Traffic Noise P	redicti	on Model (C	ALVENO)			
Project Name:	Capitola Ge				Scenario:	Existing		
Analyst:	Ryan Chier	ne			Job #:	70-100329		
Roadway:	Monterey A	venue						
Road Segment:	Washburn /	Ave to Bay Ave						
	PROJECT	DATA			5	SITE DATA		
Centerline Dist to	Barrier	0		Road Grade:		0		
Barrier (0=wall, 1=	= berm):	0		Average Dail	y Traffic:	4438		
Receiver Barrier [Dist:	0		Peak Hour Traffic: 443.8				
Centerline Dist. To	o Observer:	100		Vehicle Speed: 25				
Barrier Near Lane	CL Dist:	0		Centerline Separation: 20				
Barrier Far lane C	L Dist:	0		NOISE INPUTS				
Pad Elevation:		0.5		Site condition	ns HARD S I	TE		
Road Elevation:		0			F	LEET MIX		
Observer Height ((above grade):	0		Туре	Day	Evening	Night	Daily
Barrier Height:		0		Auto	0.775	0.129	0.096	0.9742
Rt View: 9	0	Lft View:	-90	Med. Truck	0.848	0.049	0.103	0.0184
NOISE S	Heavy Truck	0.865	0.027	0.108	0.0074			
Autos:		0						
Medium Trucks:		2.3						

UNMITIGATED NOISE LEVELS (No topographic or barrier attenuation)											
Vehicle Type	Peak Leq	Leq Day	Leq Evening	Leq Night	Ldn	CNEL					
Autos:	42.4	51.1	49.3	43.3	51.9	52.5					
Medium Trucks:	54.0	45.9	39.5	38.0	46.5	46.7					
Heavy Trucks:	60.2	48.2	39.2	40.4	50.8	50.9					
Vehicle Noise:	62.8	54.4	50.3	46.5	55.0	55.4					

MITIGATED NOISE LEVELS (With topographic or barrier attenuation)											
Vehicle Type Peak Leq Leq Day Leq Evening Leq Night Ldn CNE											
Autos:											
Medium Trucks:											
Heavy Trucks:											
Vehicle Noise:											

CENTERLINE NOISE CONTOUR							
Unmitigated							
60 dBA	38						
65 dBA	12						
70 dBA	4						
Mitigated							
60 dBA							
65 dBA							
70 dBA							

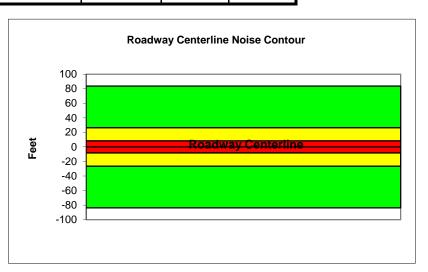


		Federal Highy Traffic Noise						
Project Name:	Capitola Ger			,		Existing		
Analyst:	Ryan Chiene				Job #:	70-100329		
Roadway:	Monterey Av	enue						
Road Segment:	Bay Ave to F	Park Avenue						
	PROJECT D	ATA			S	SITE DATA		
Centerline Dist to I	Barrier	0		Road Grade:		0		
Barrier (0=wall, 1=	berm):	0		Average Dail	y Traffic:	4015		
Receiver Barrier D	ist:	0		Peak Hour Ti	raffic:	401.5		
Centerline Dist. To	Observer:	100		Vehicle Speed: 25				
Barrier Near Lane	CL Dist:	0		Centerline Se	eparation:	24		
Barrier Far lane Cl	_ Dist:	0			NO	ISE INPUT	S	
Pad Elevation:		0.5		Site condition	ns HARD SI	TE		
Road Elevation:		0			F	LEET MIX		
Observer Height (a	above grade):	0		Туре	Day	Evening	Night	Daily
Barrier Height:		0		Auto	0.775			0.9742
Rt View: 90) ا	_ft View:	-90	Med. Truck	0.848	0.049	0.103	0.0184
NOISE S	OURCE ELEV	/ATIONS (Feet)		Heavy Truck	0.865	0.027	0.108	0.0074
Autos:		0						
Medium Trucks:		2.3						
Heavy Trucks:		8						

UNMITIG	UNMITIGATED NOISE LEVELS (No topographic or barrier attenuation)											
Vehicle Type	ehicle Type Peak Leq Leq Day Leq Evening Leq Night Ldn (
Autos:	41.8	50.6	48.8	42.8	51.4	52.0						
Medium Trucks:	53.5	45.4	39.0	37.5	46.0	46.2						
Heavy Trucks:	59.6	47.7	38.7	39.9	50.3	50.4						
Vehicle Noise:	62.3	53.9	49.8	46.0	54.5	54.9						

MITIGATED NOISE LEVELS (With topographic or barrier attenuation)										
Vehicle Type	Peak Leq	Leq Day	Leq Evening	Leq Night	Ldn	CNEL				
Autos:										
Medium Trucks:										
Heavy Trucks:										
Vehicle Noise:										

CENTERLINE NOISE CONTOUR							
Unmitigated							
60 dBA	34						
65 dBA	11						
70 dBA	3						
Mitigated							
60 dBA							
65 dBA							
70 dBA							



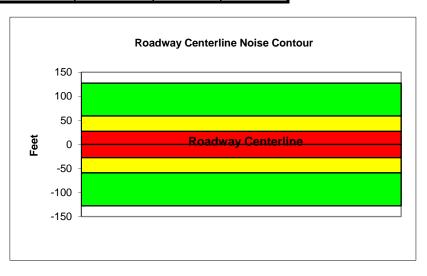
Federal Highway Administration RD-77-108 Traffic Noise Prediction Model (CALVENO)								
Project Name:	Capitola Gene	eral Plan		•	Scenario:	Existing		
Analyst:	Ryan Chiene				Job #:	70-100329		
Roadway:	Monterey Ave	nue						
Road Segment:	Park Ave to Ca	apitola Ave						
	PROJECT DA	ATA			S	ITE DATA		
Centerline Dist to B	Barrier	0		Road Grade:		0		
Barrier (0=wall, 1=	berm):	0		Average Dail	y Traffic:	9758		
Receiver Barrier Di	st:	0		Peak Hour Ti	affic:	975.8		
Centerline Dist. To	Observer:	100		Vehicle Speed:		25		
Barrier Near Lane (CL Dist:	0		Centerline Se	eparation:	22		
Barrier Far lane CL	Dist:	0			NO	ISE INPUT	S	
Pad Elevation:		0.5		Site condition	is HARD S I	TE		
Road Elevation:		0			F	LEET MIX		
Observer Height (a	bove grade):	0		Туре	Day	Evening	Night	Daily
Barrier Height:		0		Auto	0.775	0.129	0.096	0.9742
Rt View: 90	Lft	t View:	-90	Med. Truck	0.848	0.049	0.103	0.0184
NOISE SO	OURCE ELEV	ATIONS (Feet)		Heavy Truck	0.865	0.027	0.108	0.0074
Autos:		0						
Medium Trucks:		2.3						
Heavy Trucks:		8						

UNMITIGATED NOISE LEVELS (No topographic or barrier attenuation)										
Vehicle Type	Peak Leq	Leq Day	Leq Evening	Leq Night	Ldn	CNEL				
Autos:	45.7	54.5	52.7	46.6	55.3	55.9				
Medium Trucks:	57.4	49.3	42.9	41.4	49.8	50.1				
Heavy Trucks:	63.5	51.6	42.5	43.8	54.2	54.3				
Vehicle Noise:	66.2	57.8	53.7	49.9	58.4	58.8				

MITIGATED NOISE LEVELS (With topographic or barrier attenuation)										
Vehicle Type	Peak Leq	Leq Day	Leq Evening	Leq Night	Ldn	CNEL				
Autos:										
Medium Trucks:										
Heavy Trucks:										
Vehicle Noise:										

CENTERLINE NOISE CONTOUR							
Unmitigated							
60 dBA	84						
65 dBA	27						
70 dBA	8						
Mitigated							
60 dBA							
65 dBA							
70 dBA							

Federal Highway Administration RD-77-108 Traffic Noise Prediction Model (CALVENO) Project Name: Capitola General Plan Scenario: Existing Analyst: Ryan Chiene Job #: 70-100329 Roadway: Park Avenue


Road Segment: NB SR-1	Ramps to Kennedy	y Drive					
PROJECT D	ATA		SITE DATA				
Centerline Dist to Barrier:	0		Road Grade:		0		
Barrier (0=wall, 1= berm):	0		Average Dail	y Traffic:	21715		
Receiver Barrier Dist:	0		Peak Hour Ti	raffic:	2171.5		
Centerline Dist. To Observer:	100		Vehicle Spee	ed:	30		
Barrier Near Lane CL Dist:	0		Centerline Se	eparation:	24		
Barrier Far lane CL Dist:	0			NO	ISE INPUT	S	
Pad Elevation:	0.5		Site condition	ns: SOFT SI	ΤE		
Road Elevation:	0			F	LEET MIX		
Observer Height (above grade):	5.5		Type	Day	Evening	Night	Daily
Barrier Height:	0		Auto	0.775	0.129	0.096	0.9742
Rt View: 90	Lft View:	-90	Med. Truck	0.848	0.049	0.103	0.0184
NOISE SOURCE ELEV	ATIONS (Feet)		Heavy Truck	0.865	0.027	0.108	0.0074
Autos:	0						
Medium Trucks:	2.3						

UNMITIGATED NOISE LEVELS (No topographic or barrier attenuation)										
Vehicle Type	Peak Leq	Leq Day	Leq Evening	Leq Night	Ldn	CNEL				
Autos:	48.5	57.3	55.5	49.4	58.1	58.7				
Medium Trucks:	59.1	51.1	44.7	43.1	51.6	51.8				
Heavy Trucks:	64.8	52.8	43.8	45.0	55.1	55.3				
Vehicle Noise:	67.3	59.8	56.2	51.9	60.5	60.9				

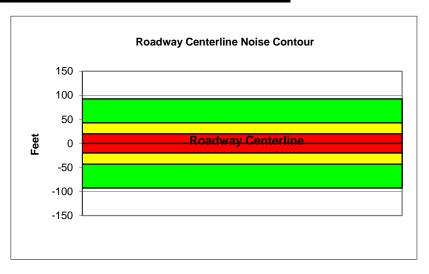
8

MITIGATED NOISE LEVELS (With topographic or barrier attenuation)										
Vehicle Type	Peak Leq	Leq Day	Leq Evening	Leq Night	Ldn	CNEL				
Autos:										
Medium Trucks:										
Heavy Trucks:										
Vehicle Noise:										

CENTERLINE NOISE CONTOUR							
Unmitigated							
60 dBA	127						
65 dBA	59						
70 dBA	27						
Mitigated							
60 dBA							
65 dBA							
70 dBA							

Federal Highway Administration RD-77-108 Traffic Noise Prediction Model (CALVENO) Project Name: Capitola General Plan Scenario: Existing Analyst: Ryan Chiene Job #: 70-100329 Roadway: Park Avenue

Road Segment: Kennedy Drive to Coronado Street


PROJECT D	DATA			5	SITE DATA		
Centerline Dist to Barrier:	0		Road Grade: 0				
Barrier (0=wall, 1= berm):	0		Average Dail	y Traffic:	9607		
Receiver Barrier Dist:	0		Peak Hour T	raffic:	960.7		
Centerline Dist. To Observer:	100		Vehicle Spee	ed:	35		
Barrier Near Lane CL Dist:	0		Centerline Se	eparation:	20		
Barrier Far lane CL Dist:	0			NO	ISE INPUT	S	
Pad Elevation:	0.5		Site condition	ns: SOFT SI	TE		
Road Elevation:	0			F	LEET MIX		
Observer Height (above grade):	5.5		Туре	Day	Evening	Night	Daily
Barrier Height:	0		Auto	0.775	0.129	0.096	0.9742
Rt View: 90	Lft View:	-90	Med. Truck	0.848	0.049	0.103	0.0184
NOISE SOURCE ELEV	/ATIONS (Feet)		Heavy Truck	0.865	0.027	0.108	0.0074
Autos:	0						
Medium Trucks:	2.3						

UNMITIGATED NOISE LEVELS (No topographic or barrier attenuation)											
Vehicle Type	Peak Leq	Leq Day	Leq Evening	Leq Night	Ldn	CNEL					
Autos:	47.0	55.8	54.0	47.9	56.6	57.2					
Medium Trucks:	56.7	48.7	42.3	40.7	49.2	49.4					
Heavy Trucks:	62.0	50.0	41.0	42.2	52.1	52.2					
Vehicle Noise:	64.4	57.8	54.6	49.9	58.4	58.9					

8

MITIGATED NOISE LEVELS (With topographic or barrier attenuation)								
Vehicle Type	Peak Leq	Leq Day	Leq Evening	Leq Night	Ldn	CNEL		
Autos:								
Medium Trucks:								
Heavy Trucks:								
Vehicle Noise:								

CENTERLINE NOISE CONTOUR						
Unmitigated						
60 dBA	93					
65 dBA	43					
70 dBA	20					
Mitigated						
60 dBA						
65 dBA						
70 dBA						

Federal Highway Administration RD-77-108 **Traffic Noise Prediction Model (CALVENO)** Capitola General Plan Project Name: Scenario: Existing Analyst: Ryan Chiene Job #: 70-100329 Roadway: Park Ave Road Segment: Coronado Street to Monterey Ave PROJECT DATA SITE DATA Centerline Dist to Barrier 0 Road Grade: 0 Barrier (0=wall, 1= berm): 0 Average Daily Traffic: 8648 Receiver Barrier Dist: Peak Hour Traffic: 864.8 0 Centerline Dist. To Observer: Vehicle Speed: 100 30 Barrier Near Lane CL Dist: 0 Centerline Separation: 22 Barrier Far lane CL Dist: 0 **NOISE INPUTS** Site conditions HARD SITE Pad Elevation: 0.5 Road Elevation: 0 **FLEET MIX** Observer Height (above grade): 0 Day Evening Night Daily Type 0.9742 Barrier Height: 0 Auto 0.775 0.129 0.096 Rt View: Lft View: -90 Med. Truck 0.848 0.049 0.103 0.0184

Heavy Truck

44.0

50.9

0.865

54.1

59.4

0.027

54.2

59.9

0.108

0.0074

Heavy Trucks:		8						
UNMITIGATED NOISE LEVELS (No topographic or barrier attenuation)								
Vehicle Type	Peak Leq	Leq Day	Leq Evening	Leq Night	Ldn	CNEL		
Autos:	47.5	56.3	54.5	48.4	57.1	57.7		
Medium Trucks:	58.1	50.0	43.6	42.1	50.6	50.8		

42.7

55.2

2.3

51.8

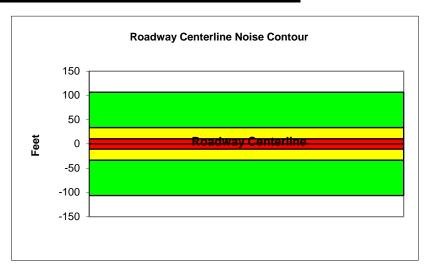
58.8

MITIGATED NOISE LEVELS (With topographic or barrier attenuation)								
Vehicle Type	Peak Leq	Leq Day	Leq Evening	Leq Night	Ldn	CNEL		
Autos:								
Medium Trucks:								
Heavy Trucks:								
Vehicle Noise:								

CENTERLINE NOISE CONTOUR							
Unmitigated							
60 dBA	107						
65 dBA	34						
70 dBA	11						
Mitigated							
60 dBA							
65 dBA							
70 dBA							

NOISE SOURCE ELEVATIONS (Feet)

63.7


66.3

Autos:

Medium Trucks:

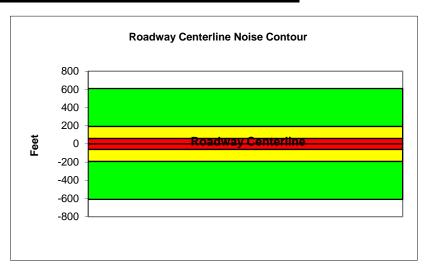
Heavy Trucks:

Vehicle Noise:

Federal Highway Administration RD-77-108 Traffic Noise Prediction Model (CALVENO) Capitola General Plan Project Name: Scenario: Future Job #:

Ryan Chiene Analyst: Roadway: 41st Street

Road Segment: NB SR-1 Ramps to Gross Road


PROJECT DATA				SITE DATA					
Centerline I	Dist to Barrier	0		Road Grade:		0			
Barrier (0=\	wall, 1= berm):	0		Average Dail	y Traffic:	35397			
Receiver Ba	arrier Dist:	0		Peak Hour Tr	raffic:	3539.7			
Centerline I	Dist. To Observer:	100		Vehicle Spee	ed:	35			
Barrier Nea	ar Lane CL Dist:	0		Centerline Separation:		36			
Barrier Far	lane CL Dist:	0			NO	ISE INPUT	S		
Pad Elevati	ion:	0.5		Site condition	ns HARD SI	TE			
Road Eleva	ation:	0			F	LEET MIX			
Observer H	leight (above grade):	: 0		Туре	Day	Evening	Night	Daily	
Barrier Heig	ght:	0		Auto	0.775	0.129	0.096	0.9742	
Rt View:	90	Lft View:	-90	Med. Truck	0.848	0.049	0.103	0.0184	
N	OISE SOURCE ELE	VATIONS (Feet)		Heavy Truck	0.865	0.027	0.108	0.0074	

Autos:	0
Medium Trucks:	2.3
Heavy Trucks:	8

UNMITIGATED NOISE LEVELS (No topographic or barrier attenuation)							
Vehicle Type	Peak Leq	Leq Day	Leq Evening	Leq Night	Ldn	CNEL	
Autos:	55.3	64.1	62.3	56.2	64.9	65.5	
Medium Trucks:	65.0	57.0	50.6	49.0	57.5	57.7	
Heavy Trucks:	70.2	58.3	49.2	50.5	60.4	60.5	
Vehicle Noise:	72.7	66.0	62.9	58.2	66.7	67.2	

MITIGATED NOISE LEVELS (With topographic or barrier attenuation)								
Vehicle Type	Peak Leq	Leq Day	Leq Evening	Leq Night	Ldn	CNEL		
Autos:								
Medium Trucks:								
Heavy Trucks:								
Vehicle Noise:								

CENTERLINE NOISE CONTOUR							
Unmitigated							
60 dBA	611						
65 dBA	193						
70 dBA	61						
Mitigated							
60 dBA							
65 dBA							
70 dBA							

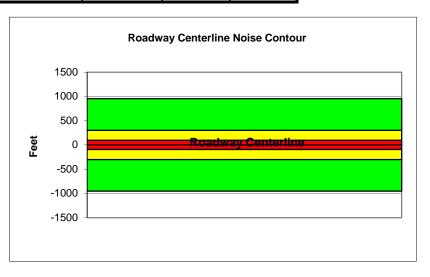
70-100329

Federal Highway Administration RD-77-108 Traffic Noise Prediction Model (CALVENO) Project Name: Capitola General Plan Scenario:

Project Name: Capitola General Plan Scenario: Future
Analyst: Ryan Chiene Job #: 70-100329

Roadway: 41st Street

Road Segment: Gross Road to Clares Street


PROJECT DATA SITE DATA Centerline Dist to Barrier 0 Road Grade: 0 Barrier (0=wall, 1= berm): 0 Average Daily Traffic: 55335 Receiver Barrier Dist: Peak Hour Traffic: 5533.5 0 Centerline Dist. To Observer: Vehicle Speed: 100 35 Barrier Near Lane CL Dist: 0 Centerline Separation: 36 **NOISE INPUTS** Barrier Far lane CL Dist: 0 Site conditions HARD SITE Pad Elevation: 0.5 FLEET MIX Road Elevation: 0 Observer Height (above grade): 0 Day Evening Night Daily Type Barrier Height: 0.9742 0 Auto 0.775 0.129 0.096 Rt View: 90 Lft View: -90 Med. Truck 0.848 0.049 0.103 0.0184 **NOISE SOURCE ELEVATIONS (Feet)** Heavy Truck 0.865 0.027 0.108 0.0074

Autos: 0
Medium Trucks: 2.3
Heavy Trucks: 8

UNMITIGATED NOISE LEVELS (No topographic or barrier attenuation)							
Vehicle Type	Peak Leq	Leq Day	Leq Evening	Leq Night	Ldn	CNEL	
Autos:	57.2	66.0	64.2	58.2	66.8	67.4	
Medium Trucks:	67.0	58.9	52.5	50.9	59.4	59.7	
Heavy Trucks:	72.2	60.2	51.2	52.4	62.3	62.4	
Vehicle Noise:	74.6	68.0	64.8	60.1	68.7	69.1	

MITIGATED NOISE LEVELS (With topographic or barrier attenuation)								
Vehicle Type	Peak Leq	Leq Day	Leq Evening	Leq Night	Ldn	CNEL		
Autos:								
Medium Trucks:								
Heavy Trucks:								
Vehicle Noise:								

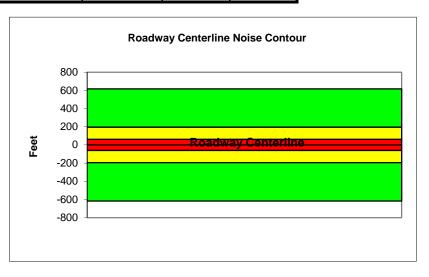
CENTERLINE NOISE CONTOUR							
Unmitigated							
60 dBA	955						
65 dBA	302						
70 dBA	95						
Mitigated							
60 dBA							
65 dBA							
70 dBA							

Federal Highway Administration RD-77-108 Traffic Noise Prediction Model (CALVENO)

Project Name: Capitola General Plan Scenario: Future
Analyst: Ryan Chiene Job #: 70-100329

Roadway: 41st Street

Road Segment: Clares Street to Capitola Road


PROJECT DATA SITE DATA Centerline Dist to Barrier 0 Road Grade: 0 Barrier (0=wall, 1= berm): 0 Average Daily Traffic: 35841 Receiver Barrier Dist: Peak Hour Traffic: 3584.1 0 Centerline Dist. To Observer: Vehicle Speed: 100 35 Barrier Near Lane CL Dist: 0 Centerline Separation: 45 **NOISE INPUTS** Barrier Far lane CL Dist: 0 Site conditions HARD SITE Pad Elevation: 0.5 Road Elevation: 0 **FLEET MIX** Observer Height (above grade): 0 Day Evening Night Daily Type Barrier Height: 0.9742 0 Auto 0.775 0.129 0.096 Rt View: 90 Lft View: -90 Med. Truck 0.848 0.049 0.103 0.0184 **NOISE SOURCE ELEVATIONS (Feet)** Heavy Truck 0.865 0.027 0.108 0.0074

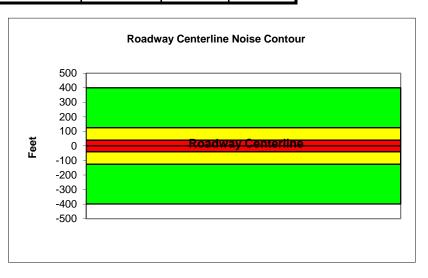
Autos: 0
Medium Trucks: 2.3
Heavy Trucks: 8

UNMITIGATED NOISE LEVELS (No topographic or barrier attenuation)							
Vehicle Type	Peak Leq	Leq Day	Leq Evening	Leq Night	Ldn	CNEL	
Autos:	55.2	64.0	62.2	56.1	64.8	65.4	
Medium Trucks:	64.9	56.9	50.5	48.9	57.4	57.6	
Heavy Trucks:	70.2	58.2	49.2	50.4	60.3	60.4	
Vehicle Noise:	72.6	66.0	62.8	58.1	66.7	67.1	

MITIGATED NOISE LEVELS (With topographic or barrier attenuation)							
Vehicle Type	Peak Leq	Leq Day	Leq Evening	Leq Night	Ldn	CNEL	
Autos:							
Medium Trucks:							
Heavy Trucks:							
Vehicle Noise:							

CENTERLINE NOISE CONTOUR							
Unmitigated							
60 dBA	618						
65 dBA	195						
70 dBA	62						
Mitigated							
60 dBA							
65 dBA							
70 dBA							

Federal Highway Administration RD-77-108 **Traffic Noise Prediction Model (CALVENO)** Project Name: Capitola General Plan Scenario: Future Ryan Chiene Analyst: Job #: 70-100329 Roadway: 41st Street Road Segment: Capitola Road to Jade Street PROJECT DATA SITE DATA Centerline Dist to Barrier Road Grade:

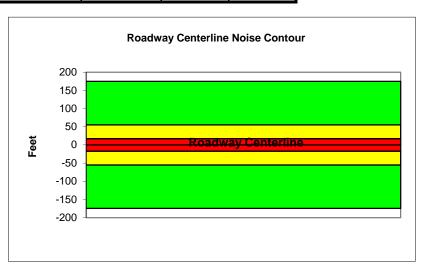

Centennie D	ist to barrier	U		Noad Grade.		U		
Barrier (0=w	all, 1= berm):	0		Average Daily Traffic: 2315		23152		
Receiver Ba	rrier Dist:	0		Peak Hour Ti	raffic:	2315.2		
Centerline D	ist. To Observer:	100		Vehicle Spee	ed:	35		
Barrier Near	Lane CL Dist:	0		Centerline Se	eparation:	34		
Barrier Far la	ane CL Dist:	0		NOISE INPUTS				
Pad Elevation	n:	0.5		Site conditions HARD SITE				
Road Elevat	ion:	0			F	LEET MIX		
Observer He	eight (above grade	e): 0		Туре	Day	Evening	Night	Daily
Barrier Heig	ht:	0		Auto	0.775	0.129	0.096	0.9742
Rt View:	90	Lft View:	-90	Med. Truck	0.848	0.049	0.103	0.0184
NC	ISE SOURCE EL	EVATIONS (Feet)		Heavy Truck	0.865	0.027	0.108	0.0074
Autos:		0						

Autos: 0
Medium Trucks: 2.3
Heavy Trucks: 8

UNMITIG	UNMITIGATED NOISE LEVELS (No topographic or barrier attenuation)							
Vehicle Type	Peak Leq	Leq Day	Leq Evening	Leq Night	Ldn	CNEL		
Autos:	53.5	62.3	60.5	54.4	63.1	63.7		
Medium Trucks:	63.2	55.1	48.8	47.2	55.7	55.9		
Heavy Trucks:	68.4	56.5	47.4	48.7	58.6	58.7		
Vehicle Noise:	70.9	64.2	61.0	56.4	64.9	65.4		

MITIGATED NOISE LEVELS (With topographic or barrier attenuation)							
Vehicle Type	Peak Leq	Leq Day	Leq Evening	Leq Night	Ldn	CNEL	
Autos:							
Medium Trucks:							
Heavy Trucks:							
Vehicle Noise:							

CENTERLINE NOISE CONTOUR							
Unmitigated							
60 dBA	400						
65 dBA	126						
70 dBA	40						
Mitigated							
60 dBA							
65 dBA							
70 dBA							

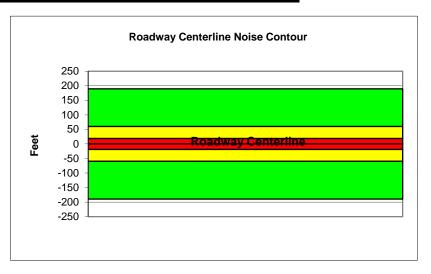


		Federal Highw Traffic Noise F						
Project Name:	Capitola Ge	neral Plan		•	Scenario:	Future		
Analyst:	Ryan Chien	е			Job #:	70-100329		
Roadway:	41st Street							
Road Segment:	Jade Street	to City Limits						
	PROJECT	DATA			5	SITE DATA		
Centerline Dist to	Barrier	0		Road Grade:		0		
Barrier (0=wall, 1=	= berm):	0		Average Dail	y Traffic:	20389		
Receiver Barrier [Dist:	0		Peak Hour Ti	raffic:	2038.9		
Centerline Dist. T	o Observer:	100		Vehicle Spee	ed:	25		
Barrier Near Lane	CL Dist:	0		Centerline Se	eparation:	24		
Barrier Far lane C	L Dist:	0			NC	ISE INPUT	S	
Pad Elevation:		0.5		Site condition	ns HARD S I	TE		
Road Elevation:		0			F	LEET MIX		
Observer Height (above grade):	0		Туре	Day	Evening	Night	Daily
Barrier Height:		0		Auto	0.775	0.129	0.096	0.9742
Rt View: 9	0	Lft View:	-90	Med. Truck	0.848	0.049	0.103	0.0184
NOISE S	SOURCE ELE	VATIONS (Feet)		Heavy Truck	0.865	0.027	0.108	0.0074
Autos:		0						
Medium Trucks:		2.3						

UNMITIG	UNMITIGATED NOISE LEVELS (No topographic or barrier attenuation)							
Vehicle Type	Peak Leq	Leq Day	Leq Evening	Leq Night	Ldn	CNEL		
Autos:	48.9	57.7	55.9	49.8	58.5	59.1		
Medium Trucks:	60.5	52.5	46.1	44.5	53.0	53.2		
Heavy Trucks:	66.7	54.8	45.7	46.9	57.3	57.4		
Vehicle Noise:	69.4	60.9	56.9	53.1	61.6	62.0		

MITIGATED NOISE LEVELS (With topographic or barrier attenuation)							
Vehicle Type	Peak Leq	Leq Day	Leq Evening	Leq Night	Ldn	CNEL	
Autos:							
Medium Trucks:							
Heavy Trucks:							
Vehicle Noise:							

CENTERLINE NOISE CONTOUR						
Unmitigated						
60 dBA	175					
65 dBA	55					
70 dBA	17					
Mitigated						
60 dBA						
65 dBA						
70 dBA						

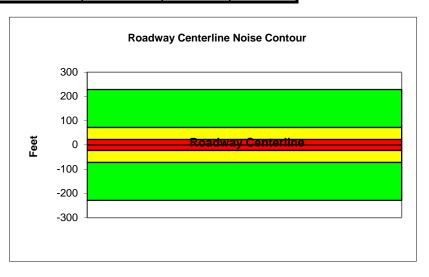


	Federal Highwa						
	Traffic Noise P	redict	ion Model (C		- .		
	General Plan			Scenario:			
Analyst: Ryan C				Job #:	70-100329		
Roadway: Capitola	ı Road						
Road Segment: City Lim	its to Clares Street						
PROJE	CT DATA			5	SITE DATA		
Centerline Dist to Barrier	0		Road Grade:		0		
Barrier (0=wall, 1= berm):	0		Average Dail	y Traffic:	22107		
Receiver Barrier Dist:	0		Peak Hour Tr	affic:	2210.7		
Centerline Dist. To Observe	r: 100		Vehicle Spee	d:	25		
Barrier Near Lane CL Dist:	0		Centerline Se	eparation:	36		
Barrier Far lane CL Dist:	0			NC	ISE INPUT	S	
Pad Elevation:	0.5		Site condition	is HARD S I	TE		
Road Elevation:	0			F	LEET MIX		
Observer Height (above gra	de): 0		Туре	Day	Evening	Night	Daily
Barrier Height:	0		Auto	0.775	0.129	0.096	0.9742
Rt View: 90	Lft View:	-90	Med. Truck	0.848	0.049	0.103	0.0184
NOISE SOURCE	LEVATIONS (Feet)		Heavy Truck	0.865	0.027	0.108	0.0074
Autos:	0						
Medium Trucks:	2.3						

UNMITIGATED NOISE LEVELS (No topographic or barrier attenuation)										
Vehicle Type	Peak Leq	Leq Day	Leq Evening	Leq Night	CNEL					
Autos:	49.1	57.8	56.0	50.0	58.6	59.2				
Medium Trucks:	60.7	52.6	46.3	44.7	53.2	53.4				
Heavy Trucks:	66.9	54.9	45.9	47.1	57.5	57.6				
Vehicle Noise:	69.5	61.1	57.0	53.2	61.7	62.1				

MITIGATED NOISE LEVELS (With topographic or barrier attenuation)									
Vehicle Type Peak Leq Leq Day Leq Evening Leq Night Ldn CNE									
Autos:									
Medium Trucks:									
Heavy Trucks:									
Vehicle Noise:									

CENTERLINE NOISE CONTOUR							
Unmitigated							
60 dBA	190						
65 dBA	60						
70 dBA	19						
Mitigated							
60 dBA							
65 dBA							
70 dBA							

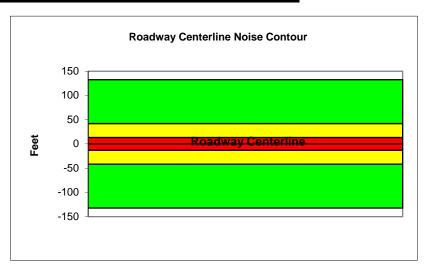

Federal Highway Administration RD-77-108 **Traffic Noise Prediction Model (CALVENO)** Project Name: Capitola General Plan Scenario: Future 70-100329 Analyst: Ryan Chiene Job #: Roadway: Capitola Road Road Segment: Clares Street to 41st Ave PROJECT DATA SITE DATA Centerline Dist to Barrier 0 Road Grade: 0 Barrier (0=wall, 1= berm): 0 Average Daily Traffic: 26700 Receiver Barrier Dist: Peak Hour Traffic: 2670 0 Centerline Dist. To Observer: Vehicle Speed: 100 25 Barrier Near Lane CL Dist: 0 Centerline Separation: 38 **NOISE INPUTS** Barrier Far lane CL Dist: 0 Site conditions HARD SITE Pad Elevation: 0.5 Road Elevation: 0 **FLEET MIX** Observer Height (above grade): 0 Day Evening Night Daily Type Barrier Height: 0.9742 0 Auto 0.775 0.129 0.096 Rt View: 90 Lft View: -90 Med. Truck 0.848 0.049 0.103 0.0184 **NOISE SOURCE ELEVATIONS (Feet)** Heavy Truck 0.865 0.027 0.108 0.0074 Autos: Medium Trucks: 2.3

UNMITIGATED NOISE LEVELS (No topographic or barrier attenuation)									
Vehicle Type Peak Leq Leq Day Leq Evening Leq Night Ldn						CNEL			
Autos:	49.8	58.6	56.8	50.8	59.4	60.0			
Medium Trucks:	61.5	53.4	47.0	45.5	54.0	54.2			
Heavy Trucks:	67.6	55.7	46.6	47.9	58.3	58.4			
Vehicle Noise:	70.3	61.9	57.8	54.0	62.5	62.9			

8

MITIGATED NOISE LEVELS (With topographic or barrier attenuation)									
Vehicle Type Peak Leq Leq Day Leq Evening Leq Night Ldn CNE									
Autos:									
Medium Trucks:									
Heavy Trucks:									
Vehicle Noise:									

CENTERLINE NOISE CONTOUR						
Unmitigated						
60 dBA	229					
65 dBA	72					
70 dBA	23					
Mitigated						
60 dBA						
65 dBA						
70 dBA						

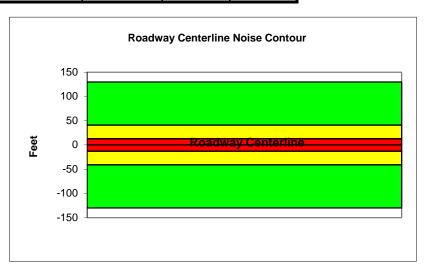


	Federal Highway Administration RD-77-108 Traffic Noise Prediction Model (CALVENO)									
Project Name:	Capitola General Pla		,	Scenario:	Future					
Analyst:	Ryan Chiene			Job #:	70-100329					
Roadway:	Capitola Road									
Road Segment:	41st Ave to 42nd Av	e								
	PROJECT DATA			S	SITE DATA					
Centerline Dist to E	Barrier	0	Road Grade:		0					
Barrier (0=wall, 1=	berm):	0	Average Dail	y Traffic:	15420					
Receiver Barrier Di	st:	0	Peak Hour T	raffic:	1542					
Centerline Dist. To	Observer: 1	00	Vehicle Speed: 25							
Barrier Near Lane (CL Dist:	0	Centerline Se	eparation:	42					
Barrier Far lane CL	Dist:	0		NO	ISE INPUT	S				
Pad Elevation:	(0.5	Site condition	ns HARD SI	TE					
Road Elevation:		0		F	LEET MIX					
Observer Height (a	bove grade):	0	Туре	Day	Evening	Night	Daily			
Barrier Height:		0	Auto	0.775	0.129	0.096	0.9742			
Rt View: 90	Lft View:	-90	Med. Truck	0.848	0.049	0.103	0.0184			
NOISE S	OURCE ELEVATION	S (Feet)	Heavy Truck	0.865	0.027	0.108	0.0074			
Autos:		0								
Medium Trucks:	2	2.3								
Heavy Trucks:		8								

UNMITIGATED NOISE LEVELS (No topographic or barrier attenuation)									
Vehicle Type Peak Leq Leq Day Leq Evening Leq Night Ldn					Ldn	CNEL			
Autos:	47.4	56.2	54.4	48.3	57.0	57.6			
Medium Trucks:	59.0	51.0	44.6	43.0	51.5	51.7			
Heavy Trucks:	65.2	53.3	44.2	45.4	55.8	55.9			
Vehicle Noise:	67.9	59.4	55.4	51.6	60.1	60.5			

MITIGATED NOISE LEVELS (With topographic or barrier attenuation)									
Vehicle Type Peak Leq Leq Day Leq Evening Leq Night Ldn CN									
Autos:									
Medium Trucks:									
Heavy Trucks:									
Vehicle Noise:									

CENTERLINE NOISE CONTOUR							
Unmitigated							
60 dBA	132						
65 dBA	42						
70 dBA	13						
Mitigated							
60 dBA							
65 dBA							
70 dBA							

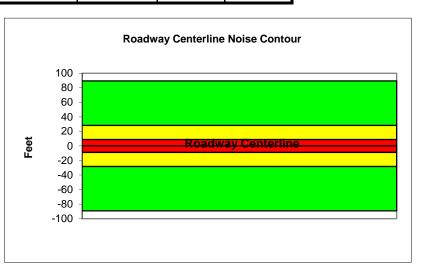


	Federal Highway Administration RD-77-108 Traffic Noise Prediction Model (CALVENO)									
Project Name:	Capitola Ge			Scenario: Future						
Analyst:	Ryan Chien	е			Job #:	70-100329				
Roadway:	Capitola Ro	ad								
Road Segment:	46th Ave to	49th Ave								
	PROJECT	DATA			S	SITE DATA				
Centerline Dist to B	arrier	0		Road Grade:		0				
Barrier (0=wall, 1= l	berm):	0		Average Dail	y Traffic:	15132				
Receiver Barrier Dis	st:	0		Peak Hour Ti	raffic:	1513.2				
Centerline Dist. To	Observer:	100		Vehicle Spee	ed:	25				
Barrier Near Lane (CL Dist:	0		Centerline Se	eparation:	20				
Barrier Far lane CL	Dist:	0			NO	ISE INPUT	S			
Pad Elevation:		0.5		Site condition	ns HARD SI	TE				
Road Elevation:		0			F	LEET MIX				
Observer Height (al	bove grade):	0		Туре	Day	Evening	Night	Daily		
Barrier Height:		0		Auto	0.775	0.129	0.096	0.9742		
Rt View: 90		Lft View:	-90	Med. Truck	0.848	0.049	0.103	0.0184		
NOISE SO	OURCE ELE	VATIONS (Feet)		Heavy Truck	0.865	0.027	0.108	0.0074		
Autos:		0								
Medium Trucks:		2.3								
Heavy Trucks:		8								

UNMITIGATED NOISE LEVELS (No topographic or barrier attenuation)										
Vehicle Type	hicle Type Peak Leq Leq Day Leq Evening Leq Night Ldn									
Autos:	47.7	56.5	54.7	48.6	57.2	57.8				
Medium Trucks:	59.3	51.3	44.9	43.3	51.8	52.0				
Heavy Trucks:	65.5	53.5	44.5	45.7	56.1	56.2				
Vehicle Noise:	68.1	59.7	55.7	51.8	60.4	60.7				

MITIGATED NOISE LEVELS (With topographic or barrier attenuation)										
Vehicle Type Peak Leq Leq Day Leq Evening Leq Night Ldn CNE										
Autos:										
Medium Trucks:										
Heavy Trucks:										
Vehicle Noise:										

CENTERLINE NOISE CONTOUR							
Unmitigated							
60 dBA	130						
65 dBA	41						
70 dBA	13						
Mitigated							
60 dBA							
65 dBA							
70 dBA							

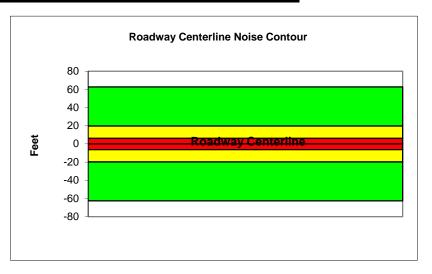


Federal Highway Administration RD-77-108 **Traffic Noise Prediction Model (CALVENO)** Project Name: Capitola General Plan Scenario: Future 70-100329 Analyst: Ryan Chiene Job #: Roadway: Capitola Road Road Segment: 49th Ave to Wharf Road PROJECT DATA SITE DATA Centerline Dist to Barrier 0 Road Grade: 0 Barrier (0=wall, 1= berm): 0 Average Daily Traffic: 10406 Receiver Barrier Dist: Peak Hour Traffic: 1040.6 0 Centerline Dist. To Observer: Vehicle Speed: 100 25 Barrier Near Lane CL Dist: 0 Centerline Separation: 22 **NOISE INPUTS** Barrier Far lane CL Dist: 0 Site conditions HARD SITE Pad Elevation: 0.5 Road Elevation: 0 **FLEET MIX** Observer Height (above grade): 0 Day Evening Night Daily Type 0.9742 Barrier Height: 0 Auto 0.775 0.129 0.096 Rt View: 90 Lft View: -90 Med. Truck 0.848 0.049 0.103 0.0184 **NOISE SOURCE ELEVATIONS (Feet)** Heavy Truck 0.865 0.027 0.108 0.0074 Autos: Medium Trucks: 2.3 Heavy Trucks: 8

UNMITIGATED NOISE LEVELS (No topographic or barrier attenuation)										
Vehicle Type	Peak Leq	Leq Day	Leq Evening	Leq Night	Ldn	CNEL				
Autos:	46.0	54.8	53.0	46.9	55.6	56.2				
Medium Trucks:	57.7	49.6	43.2	41.6	50.1	50.4				
Heavy Trucks:	63.8	51.9	42.8	44.0	54.4	54.6				
Vehicle Noise:	66.5	58.0	54.0	50.2	58.7	59.1				

MITIGATED NOISE LEVELS (With topographic or barrier attenuation)										
Vehicle Type	le Type Peak Leq Leq Day Leq Evening Leq Night Ldn CNE									
Autos:										
Medium Trucks:										
Heavy Trucks:										
Vehicle Noise:										

CENTERLINE NOISE CONTOUR							
Unmitigated							
60 dBA	89						
65 dBA	28						
70 dBA	9						
Mitigated							
60 dBA							
65 dBA							
70 dBA							

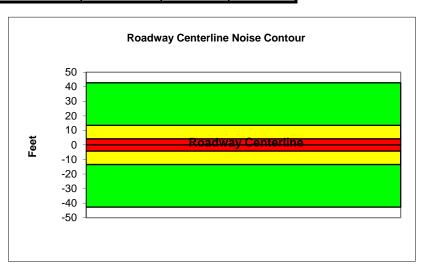


	Federal Highway Administration RD-77-108 Traffic Noise Prediction Model (CALVENO)										
Project Name:	Capitola Genera	ıl Plan		,	Scenario:	Future					
Analyst:	Ryan Chiene				Job #:	70-100329					
Roadway:	Clares Street										
Road Segment:	40th Ave to 41st	Ave									
	PROJECT DAT	Α			S	ITE DATA					
Centerline Dist to B	arrier	0		Road Grade:		0					
Barrier (0=wall, 1=	berm):	0		Average Dail	y Traffic:	7310					
Receiver Barrier Dis	st:	0		Peak Hour Ti	affic:	731					
Centerline Dist. To	Observer:	100		Vehicle Speed: 2		25					
Barrier Near Lane (CL Dist:	0		Centerline Se	eparation:	26					
Barrier Far lane CL	Dist:	0			NO	ISE INPUT	S				
Pad Elevation:		0.5		Site condition	is HARD S I	TE					
Road Elevation:		0			F	LEET MIX					
Observer Height (a	bove grade):	0		Туре	Day	Evening	Night	Daily			
Barrier Height:		0		Auto	0.775	0.129	0.096	0.9742			
Rt View: 90	Lft ∨	iew:	-90	Med. Truck	0.848	0.049	0.103	0.0184			
NOISE SO	OURCE ELEVAT	IONS (Feet)		Heavy Truck	0.865	0.027	0.108	0.0074			
Autos:		0									
Medium Trucks:		2.3									
Heavy Trucks:		8									

UNMITIGATED NOISE LEVELS (No topographic or barrier attenuation)										
Vehicle Type	Peak Leq	Leq Day	Leq Evening	Leq Night	Ldn	CNEL				
Autos:	44.4	53.2	51.4	45.3	54.0	54.6				
Medium Trucks:	56.1	48.0	41.6	40.0	48.5	48.8				
Heavy Trucks:	62.2	50.3	41.2	42.4	52.8	53.0				
Vehicle Noise:	64.9	56.4	52.4	48.6	57.1	57.5				

MITIGATED NOISE LEVELS (With topographic or barrier attenuation)										
Vehicle Type	ehicle Type Peak Leq Leq Day Leq Evening Leq Night Ldn CN									
Autos:										
Medium Trucks:										
Heavy Trucks:										
Vehicle Noise:										

CENTERLINE NOISE CONTOUR							
Unmitigated							
60 dBA	63						
65 dBA	20						
70 dBA	6						
Mitigated							
60 dBA							
65 dBA							
70 dBA							

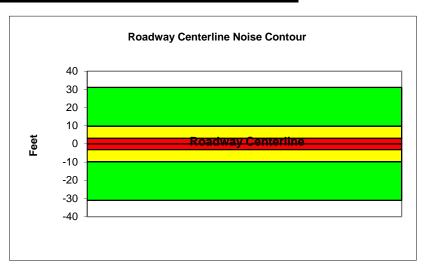


	Federal Highway Administration RD-77-108 Traffic Noise Prediction Model (CALVENO)										
Project Name:	Capitola General			,	Scenario:	Future					
Analyst:	Ryan Chiene				Job #:	70-100329					
Roadway:	Clares Street										
Road Segment:	41st Ave to 42nd	Ave									
	PROJECT DATA	1			S	ITE DATA					
Centerline Dist to B	arrier	0		Road Grade:		0					
Barrier (0=wall, 1=	berm):	0		Average Dail	y Traffic:	4988					
Receiver Barrier Di	st:	0		Peak Hour Ti	affic:	498.8					
Centerline Dist. To	Observer:	100		Vehicle Speed:		25					
Barrier Near Lane (CL Dist:	0		Centerline Separation: 26							
Barrier Far lane CL	Dist:	0		NOISE INPUTS							
Pad Elevation:		0.5		Site condition	is HARD SI	TE					
Road Elevation:		0			F	LEET MIX					
Observer Height (a	bove grade):	0		Туре	Day	Evening	Night	Daily			
Barrier Height:		0		Auto	0.775	0.129	0.096	0.9742			
Rt View: 90	Lft Vi	ew:	-90	Med. Truck	0.848	0.049	0.103	0.0184			
NOISE SOURCE ELEVATIONS (Feet)				Heavy Truck	0.865	0.027	0.108	0.0074			
Autos:		0									
Medium Trucks:		2.3									
Heavy Trucks:		8									

UNMITIGATED NOISE LEVELS (No topographic or barrier attenuation)										
Vehicle Type	Peak Leq	Leq Day	Leq Evening	Leq Night	Ldn	CNEL				
Autos:	42.8	51.5	49.7	43.7	52.3	52.9				
Medium Trucks:	54.4	46.3	40.0	38.4	46.9	47.1				
Heavy Trucks:	60.6	48.6	39.6	40.8	51.2					
Vehicle Noise:	63.2	54.8	50.7	46.9	55.4	55.8				

MITIGATED NOISE LEVELS (With topographic or barrier attenuation)											
Vehicle Type	Peak Leq	Leq Day	Leq Evening	Leq Night	Ldn	CNEL					
Autos:											
Medium Trucks:											
Heavy Trucks:											
Vehicle Noise:											

CENTERLINE NOISE CONTOUR								
Unmitigated								
60 dBA	43							
65 dBA	14							
70 dBA	4							
Mitigated								
60 dBA								
65 dBA								
70 dBA								

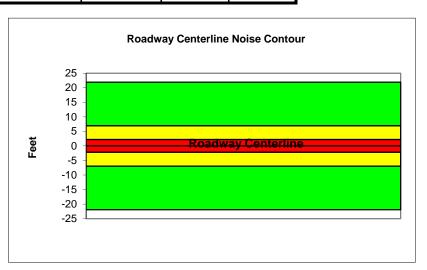


Federal Highway Administration RD-77-108 Traffic Noise Prediction Model (CALVENO)											
Project Name:	Capitola Genera	al Plan		,	Scenario:	Future					
Analyst:	Ryan Chiene				Job #:	70-100329					
Roadway:	Clares Street										
Road Segment:	46th Ave to What	arf Road									
	PROJECT DAT	Α			S	SITE DATA					
Centerline Dist to B	arrier	0		Road Grade:		0					
Barrier (0=wall, 1=	berm):	0		Average Dail	y Traffic:	3621					
Receiver Barrier Dis	st:	0		Peak Hour Ti	affic:	362.1					
Centerline Dist. To	Observer:	100		Vehicle Speed:		25					
Barrier Near Lane (CL Dist:	0		Centerline Se	eparation:	24					
Barrier Far lane CL	Dist:	0			NO	ISE INPUT	S				
Pad Elevation:		0.5		Site condition	is HARD SI	TE					
Road Elevation:		0			F	LEET MIX					
Observer Height (a	bove grade):	0		Туре	Day	Evening	Night	Daily			
Barrier Height:		0		Auto	0.775	0.129	0.096	0.9742			
Rt View: 90	Lft \	√iew:	-90	Med. Truck	0.848	0.049	0.103	0.0184			
NOISE SO	OURCE ELEVAT	TIONS (Feet)		Heavy Truck	0.865	0.027	0.108	0.0074			
Autos:		0									
Medium Trucks:		2.3									
Heavy Trucks:		8									

UNMITIGATED NOISE LEVELS (No topographic or barrier attenuation)											
Vehicle Type	Peak Leq Leq Day Leq Evening Leq Night Ldn										
Autos:	41.4	50.2	48.4	42.3	51.0	51.6					
Medium Trucks:	53.0	45.0	38.6	37.0	45.5	45.7					
Heavy Trucks:	59.2	47.3	38.2	39.4	49.8	49.9					
Vehicle Noise:	61.9	53.4	49.4	45.6	54.1	54.5					

MITIGATED NOISE LEVELS (With topographic or barrier attenuation)											
Vehicle Type	Peak Leq	Leq Day	Leq Evening	Leq Night	Ldn	CNEL					
Autos:											
Medium Trucks:											
Heavy Trucks:											
Vehicle Noise:											

CENTERLINE NOISE CONTOUR								
Unmitigated								
60 dBA	31							
65 dBA	10							
70 dBA	3							
Mitigated								
60 dBA								
65 dBA								
70 dBA								

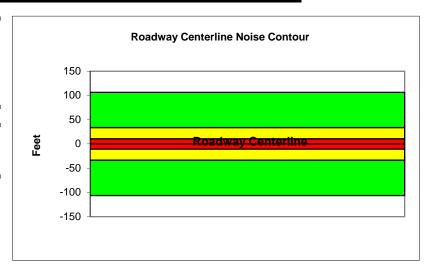


Federal Highway Administration RD-77-108 Traffic Noise Prediction Model (CALVENO)											
Project Name:	Capitola General Plan		,	Scenario:	Future						
Analyst:	Ryan Chiene			Job #:	70-100329						
Roadway:	Wharf Road										
Road Segment:	Clares Street to Captio	la Road									
	PROJECT DATA			S	SITE DATA						
Centerline Dist to B	arrier 0		Road Grade:		0						
Barrier (0=wall, 1= l	berm): 0)	Average Dail	y Traffic:	2560						
Receiver Barrier Dis	st: 0)	Peak Hour Tr	affic:	256						
Centerline Dist. To	Observer: 100)	Vehicle Speed: 25								
Barrier Near Lane (CL Dist: 0)	Centerline Se	eparation:	24						
Barrier Far lane CL	Dist: 0)		NO	ISE INPUT	S					
Pad Elevation:	0.5	5	Site condition	is HARD SI	TE						
Road Elevation:	0)		F	LEET MIX						
Observer Height (al	bove grade): 0)	Туре	Day	Evening	Night	Daily				
Barrier Height:	0)	Auto	0.775	0.129	0.096	0.9742				
Rt View: 90	Lft View:	-90	Med. Truck	0.848	0.049	0.103	0.0184				
NOISE SO	OURCE ELEVATIONS	Heavy Truck	0.865	0.027	0.108	0.0074					
Autos:	0										
Medium Trucks:	2.3	3									
Heavy Trucks:	8	3									

UNMITIGATED NOISE LEVELS (No topographic or barrier attenuation)											
Vehicle Type Peak Leq Leq Day Leq Evening Leq Night Ldn											
Autos:	39.9	48.7	46.9	40.8	49.5	50.1					
Medium Trucks:	51.5	43.5	37.1	35.5	44.0	44.2					
Heavy Trucks:	57.7	45.8	36.7	37.9	48.3	48.4					
Vehicle Noise:	60.4	51.9	47.9	44.0	52.6	53.0					

MITIGATED NOISE LEVELS (With topographic or barrier attenuation)											
Vehicle Type	Peak Leq	Leq Day	Leq Evening	Leq Night	Ldn	CNEL					
Autos:											
Medium Trucks:											
Heavy Trucks:											
Vehicle Noise:											

CENTERLINE NOISE CONTOUR								
Unmitigated								
60 dBA	22							
65 dBA	7							
70 dBA	2							
Mitigated								
60 dBA								
65 dBA								
70 dBA								



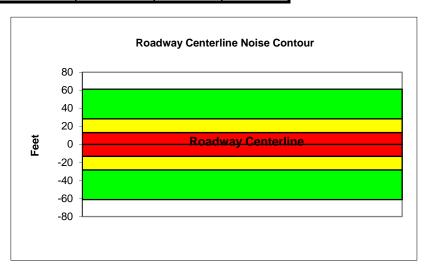
	Federal Highway Administration RD-77-108									
		Traffic Noise P	redict	ion Model (C						
Project Name:	Capitola Ge				Scenario:	Future				
Analyst:	Ryan Chier	ne			Job #:	70-100329				
Roadway:	Wharf Road	t								
Road Segment:	Captiola Ro	oad to Cliff Drive								
	PROJECT	DATA			5	SITE DATA				
Centerline Dist to	Barrier	0		Road Grade:		0				
Barrier (0=wall, 1=	= berm):	0		Average Dail	y Traffic:	12407				
Receiver Barrier [Dist:	0		Peak Hour Traffic:		1240.7				
Centerline Dist. T	o Observer:	100		Vehicle Speed:		25				
Barrier Near Lane	CL Dist:	0		Centerline Se	eparation:	24				
Barrier Far lane C	CL Dist:	0			NC	ISE INPUT	S			
Pad Elevation:		0.5		Site condition	ns HARD S I	TE				
Road Elevation:		0			F	LEET MIX				
Observer Height ((above grade)	: 0		Туре	Day	Evening	Night	Daily		
Barrier Height:		0		Auto 0.775 0.129 0.096			0.9742			
Rt View: 9	00	Lft View:	-90	Med. Truck	0.848	0.049	0.103	0.0184		
NOISE SOURCE ELEVATIONS (Feet)				Heavy Truck	0.865	0.027	0.108	0.0074		
Autos:		0		_						
Medium Trucks:		2.3								

UNMITIGATED NOISE LEVELS (No topographic or barrier attenuation)												
Vehicle Type	Peak Leq	Leq Day	Leq Evening	Leq Night	Ldn	CNEL						
Autos:	46.7	55.5	53.7	47.7	56.3	56.9						
Medium Trucks:	58.4	50.3	43.9	42.4	50.9	51.1						
Heavy Trucks:	64.5	52.6	43.6	44.8	55.2	55.3						
Vehicle Noise:	67.2	58.8	54.7	50.9	59.4	59.8						

MITIGATED NOISE LEVELS (With topographic or barrier attenuation)									
Vehicle Type	Peak Leq	Leq Day	Leq Evening	Leq Night	Ldn	CNEL			
Autos:									
Medium Trucks:									
Heavy Trucks:									
Vehicle Noise:									

CENTERLINE NOISE CONTOUR							
Unmitigated							
60 dBA	107						
65 dBA	34						
70 dBA	11						
Mitigated							
60 dBA							
65 dBA							
70 dBA							

Federal Highway Administration RD-77-108 Traffic Noise Prediction Model (CALVENO) Project Name: Capitola General Plan Scenario: Future Analyst: Ryan Chiene Job #: 70-100329 Roadway: Cliff Drive Road Segment: 47th Ave to Wharf Road


	PROJECT D	ATA		SITE DATA				
Centerline Dist to	o Barrier:	0		Road Grade:		0		
Barrier (0=wall, 1	1= berm):	0		Average Dail	y Traffic:	10385		
Receiver Barrier	Dist:	0		Peak Hour T	raffic:	1038.5		
Centerline Dist.	To Observer:	100		Vehicle Spee	ed:	25		
Barrier Near Lar	e CL Dist:	0		Centerline Se	eparation:	22		
Barrier Far lane	CL Dist:	0			NC	ISE INPUT	S	
Pad Elevation:		0.5		Site condition	ns: SOFT SI	TE		
Road Elevation:		0			F	LEET MIX		
Observer Height	(above grade):	5.5		Туре	Day	Evening	Night	Daily
Barrier Height:		0		Auto	0.775	0.129	0.096	0.9742
Rt View:	90	Lft View:	-90	Med. Truck	0.848	0.049	0.103	0.0184
NOISE	NOISE SOURCE ELEVATIONS (Feet)			Heavy Truck	0.865	0.027	0.108	0.0074
Autos:		0						
Medium Trucks:		2.3						

UNMITIGATED NOISE LEVELS (No topographic or barrier attenuation)										
Vehicle Type	Peak Leq	Leq Day	Leq Evening	Leq Night	Ldn	CNEL				
Autos:	43.1	51.9	50.1	44.0	52.7	53.3				
Medium Trucks:	54.7	46.7	40.3	38.7	47.2	47.4				
Heavy Trucks:	60.9	49.0	39.9	41.1	51.5	51.6				
Vehicle Noise:	63.6	55.1	51.1	47.3	55.8	56.2				

8

MITIGATED NOISE LEVELS (With topographic or barrier attenuation)									
Vehicle Type	Peak Leq	Leq Day	Leq Evening	Leq Night	Ldn	CNEL			
Autos:									
Medium Trucks:									
Heavy Trucks:									
Vehicle Noise:									

CENTERLINE NOISE CONTOUR							
Unmitigated							
60 dBA	61						
65 dBA	28						
70 dBA	13						
Mitigated							
60 dBA							
65 dBA							
70 dBA							
10001							

Federal Highway Administration RD-77-108 **Traffic Noise Prediction Model (CALVENO)** Capitola General Plan Scenario: Future Project Name: Ryan Chiene Job #: 70-100329 Analyst: Roadway: Cliff Drive Road Segment: Wharf Road to Capitola Ave PROJECT DATA SITE DATA Centerline Dist to Barrier 0 Road Grade: 0 Barrier (0=wall, 1= berm): 0 Average Daily Traffic: 16527 1652.7 Receiver Barrier Dist: Peak Hour Traffic: 0 Centerline Dist. To Observer: Vehicle Speed: 100 25 Barrier Near Lane CL Dist: 0 Centerline Separation: 22 Barrier Far lane CL Dist: 0 **NOISE INPUTS** Site conditions HARD SITE Pad Elevation: 0.5 Road Elevation: 0 **FLEET MIX** Observer Height (above grade): 0 Day Evening Night Daily Type 0.9742 Barrier Height: 0 0.775 0.129 0.096 Auto Rt View: 90 Lft View: -90 Med. Truck 0.848 0.049 0.103 0.0184

Heavy Truck

46.1

52.2

0.865

56.4

60.7

0.027

56.6

61.1

0.108

0.0074

Heavy Trucks:		8						
UNMITIGATED NOISE LEVELS (No topographic or barrier attenuation)								
Vehicle Type	Peak Leq							
Autos:	48.0	56.8	55.0	48.9	57.6	58.2		
Medium Trucks:	59.7	51.6	45.2	43.6	52.1	52.4		

44.8

56.0

2.3

53.9

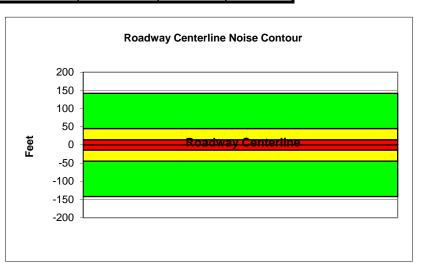
60.1

MITIGATED NOISE LEVELS (With topographic or barrier attenuation)									
Vehicle Type	Peak Leq	Leq Day	Leq Evening	Leq Night	Ldn	CNEL			
Autos:									
Medium Trucks:									
Heavy Trucks:									
Vehicle Noise:									

CENTERLINE NOISE CONTOUR						
Unmitigated						
60 dBA	142					
65 dBA	45					
70 dBA	14					
Mitigated						
60 dBA						
65 dBA						
70 dBA						

NOISE SOURCE ELEVATIONS (Feet)

65.8

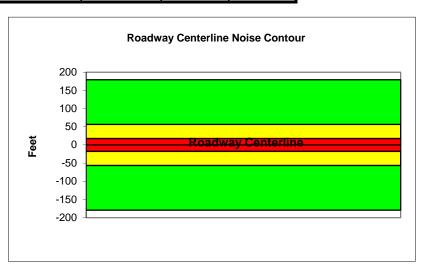

68.5

Autos:

Medium Trucks:

Heavy Trucks:

Vehicle Noise:

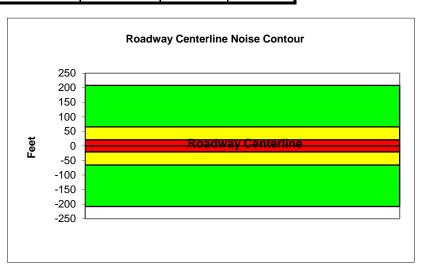


	Fodorol Highwa	ov. A also	niniotration D	D 77 400					
Federal Highway Administration RD-77-108 Traffic Noise Prediction Model (CALVENO)									
Project Name: Capitola	General Plan	realet	ion model (c	Scenario:	Future				
Analyst: Ryan Ch				Job #:	70-100329				
Roadway: Bay Aver									
•	Ramps to Hill Street								
	T DATA			5	SITE DATA				
Centerline Dist to Barrier	0		Road Grade:		0				
Barrier (0=wall, 1= berm):	0		Average Dail	y Traffic:	20899				
Receiver Barrier Dist:	0		Peak Hour Ti	affic:	2089.9				
Centerline Dist. To Observer:	100		Vehicle Spee	d:	25				
Barrier Near Lane CL Dist:	0		Centerline Se	eparation:	34				
Barrier Far lane CL Dist:	0			NC	ISE INPUT	S			
Pad Elevation:	0.5		Site condition	is HARD S I	TE				
Road Elevation:	0			F	LEET MIX				
Observer Height (above grad	e): 0		Туре	Day	Evening	Night	Daily		
Barrier Height:	0		Auto	0.775	0.129	0.096	0.9742		
Rt View: 90	Lft View:	-90	Med. Truck	0.848	0.049	0.103	0.0184		
NOISE SOURCE E	LEVATIONS (Feet)		Heavy Truck	0.865	0.027	0.108	0.0074		
Autos:	0								
Medium Trucks:	2.3								

UNMITIGATED NOISE LEVELS (No topographic or barrier attenuation)										
Vehicle Type	Peak Leq	Leq Day	Leq Evening	Leq Night	Ldn	CNEL				
Autos:	48.8	57.6	55.8	49.8	58.4	59.0				
Medium Trucks:	60.5	52.4	46.0	44.5	53.0	53.2				
Heavy Trucks:	66.6	54.7	45.6	46.9	57.3	57.4				
Vehicle Noise:	69.3	60.9	56.8	53.0	61.5	61.9				

MITIGATED NOISE LEVELS (With topographic or barrier attenuation)									
Vehicle Type	Peak Leq	Leq Day	Leq Evening	Leq Night	Ldn	CNEL			
Autos:									
Medium Trucks:									
Heavy Trucks:									
Vehicle Noise:									

CENTERLINE NOISE CONTOUR						
Unmitigated						
60 dBA	179					
65 dBA	57					
70 dBA	18					
Mitigated						
60 dBA						
65 dBA						
70 dBA						



	Federal Highwa	av Adr	ninistration R	D-77-108			
	Traffic Noise P						
Project Name: Capitola G	eneral Plan		,	Scenario:	Future		
Analyst: Ryan Chie	ne			Job #:	70-100329		
Roadway: Bay Aveni	ıe						
Road Segment: Hill Street	to Capitola Ave						
PROJECT	DATA			S	ITE DATA		
Centerline Dist to Barrier	0		Road Grade:		0		
Barrier (0=wall, 1= berm):	0		Average Daily	y Traffic:	24261		
Receiver Barrier Dist:	0		Peak Hour Tr	affic:	2426.1		
Centerline Dist. To Observer:	100		Vehicle Spee	d:	25		
Barrier Near Lane CL Dist:	0		Centerline Se	eparation:	34		
Barrier Far lane CL Dist:	0		NOISE INPUTS				
Pad Elevation:	0.5		Site conditions HARD SITE				
Road Elevation:	0			F	LEET MIX		
Observer Height (above grade): 0		Туре	Day	Evening	Night	Daily
Barrier Height:	0		Auto	0.775	0.129	0.096	0.9742
Rt View: 90	Lft View:	-90	Med. Truck	0.848	0.049	0.103	0.0184
NOISE SOURCE EL	EVATIONS (Feet)		Heavy Truck	0.865	0.027	0.108	0.0074
Autos:	0						
Medium Trucks:	2.3						

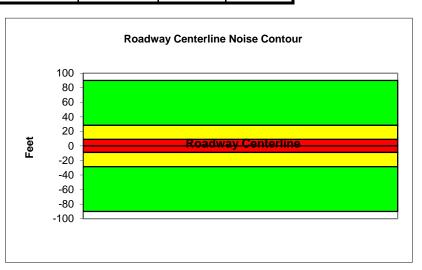
UNMITIGATED NOISE LEVELS (No topographic or barrier attenuation)							
Vehicle Type	Peak Leq	Leq Day	Leq Evening	Leq Night	Ldn	CNEL	
Autos:	49.5	58.3	56.5	50.4	59.0	59.7	
Medium Trucks:	61.1	53.1	46.7	45.1	53.6	53.8	
Heavy Trucks:	67.3	55.4	46.3	47.5	57.9	58.0	
Vehicle Noise:	70.0	61.5	57.5	53.6	62.2	62.6	

MITIGATED NOISE LEVELS (With topographic or barrier attenuation)							
Vehicle Type	Peak Leq	Leq Day	Leq Evening	Leq Night	Ldn	CNEL	
Autos:							
Medium Trucks:							
Heavy Trucks:							
Vehicle Noise:							

CENTERLINE NOISE CONTOUR						
Unmitigated						
60 dBA	208					
65 dBA	66					
70 dBA	21					
Mitigated						
60 dBA						
65 dBA						
70 dBA						

Federal Highway Administration RD-77-108 **Traffic Noise Prediction Model (CALVENO)** Project Name: Capitola General Plan Scenario: Future 70-100329 Analyst: Ryan Chiene Job #: Roadway: Bay Avenue Road Segment: Capitola Ave to Monterey Ave PROJECT DATA SITE DATA Centerline Dist to Barrier 0 Road Grade: 0 Barrier (0=wall, 1= berm): 0 Average Daily Traffic: 10506 Receiver Barrier Dist: Peak Hour Traffic: 1050.6 0 Centerline Dist. To Observer: Vehicle Speed: 100 25 Barrier Near Lane CL Dist: 0 Centerline Separation: 24 **NOISE INPUTS** Barrier Far lane CL Dist: 0 Site conditions HARD SITE Pad Elevation: 0.5 Road Elevation: 0 **FLEET MIX** Observer Height (above grade): 0 Day Evening Night Daily Type Barrier Height: 0.9742 0 Auto 0.775 0.129 0.096 Rt View: 90 Lft View: -90 Med. Truck 0.848 0.049 0.103 0.0184 **NOISE SOURCE ELEVATIONS (Feet)** Heavy Truck 0.865 0.027 0.108 0.0074 Autos:

UNMITIG	UNMITIGATED NOISE LEVELS (No topographic or barrier attenuation)							
Vehicle Type	Peak Leq	Leq Day	Leq Evening	Leq Night	Ldn	CNEL		
Autos:	46.0	54.8	53.0	46.9	55.6	56.2		
Medium Trucks:	57.7	49.6	43.2	41.6	50.1	50.4		
Heavy Trucks:	63.8	51.9	42.8	44.1	54.4	54.6		
Vehicle Noise:	66.5	58.1	54.0	50.2	58.7	59.1		

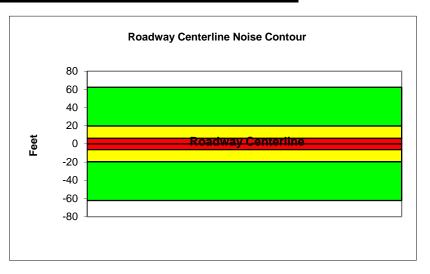

2.3

8

MITIGATED NOISE LEVELS (With topographic or barrier attenuation)							
Vehicle Type	Peak Leq	Peak Leq Leq Day Leq Evening Leq Night Ldn CN					
Autos:							
Medium Trucks:							
Heavy Trucks:							
Vehicle Noise:							

CENTERLINE NOISE CONTOUR						
Unmitigated						
60 dBA	90					
65 dBA	28					
70 dBA	9					
Mitigated						
60 dBA						
65 dBA						
70 dBA						

Medium Trucks:

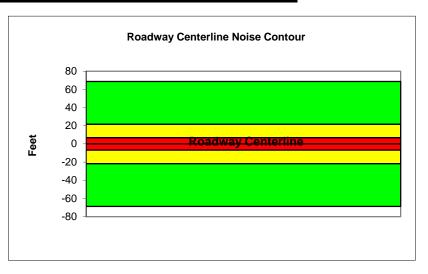


		Federal Highwa						
Project Name:	Capitola Ge	Traffic Noise P	redict	ion Model (C	ALVENO) Scenario:	Futuro		
Analyst:	Ryan Chien				Job #:	70-100329		
Roadway:	Capitola Av				30D #.	70-100323		
Road Segment:	•	Riverview Drive						
Road Segment.						NITE DATA		
	PROJECT	DATA				SITE DATA		
Centerline Dist to		0		Road Grade:		0		
Barrier (0=wall, 1=	= berm):	0		Average Dail	y Traffic:	7261		
Receiver Barrier [Dist:	0		Peak Hour Traffic:		726.1		
Centerline Dist. To	o Observer:	100		Vehicle Speed:		25		
Barrier Near Lane	CL Dist:	0		Centerline Se	eparation:	24		
Barrier Far lane C	L Dist:	0		NOISE INPUTS				
Pad Elevation:		0.5		Site conditions HARD SITE				
Road Elevation:		0		FLEET MIX				
Observer Height ((above grade):	. 0		Type	Day	Evening	Night	Daily
Barrier Height:		0		Auto	0.775	0.129	0.096	0.9742
Rt View: 9	00	Lft View:	-90	Med. Truck	0.848	0.049	0.103	0.0184
NOISE S	SOURCE ELE	VATIONS (Feet)		Heavy Truck	0.865	0.027	0.108	0.0074
Autos:		0						·
Medium Trucks:		2.3						

UNMITIG	UNMITIGATED NOISE LEVELS (No topographic or barrier attenuation)							
Vehicle Type	Peak Leq	Leq Day	Leq Evening	Leq Night	Ldn	CNEL		
Autos:	44.4	53.2	51.4	45.3	54.0	54.6		
Medium Trucks:	56.1	48.0	41.6	40.0	48.5	48.8		
Heavy Trucks:	62.2	50.3	41.2	42.4	52.8	53.0		
Vehicle Noise:	64.9	56.4	52.4	48.6	57.1	57.5		

MITIGATED NOISE LEVELS (With topographic or barrier attenuation)							
Vehicle Type	Peak Leq	Peak Leq Leq Day Leq Evening Leq Night Ldn CN					
Autos:							
Medium Trucks:							
Heavy Trucks:							
Vehicle Noise:							

CENTERLINE NOISE CONTOUR						
Unmitigated						
60 dBA	62					
65 dBA	20					
70 dBA	6					
Mitigated						
60 dBA						
65 dBA						
70 dBA						

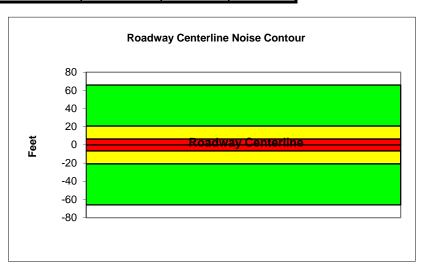

Federal Highway Administration RD-77-108 **Traffic Noise Prediction Model (CALVENO)** Project Name: Capitola General Plan Scenario: Future 70-100329 Analyst: Ryan Chiene Job #: Roadway: Capitola Avenue Road Segment: Riverview Drive to Stockton Ave PROJECT DATA SITE DATA Centerline Dist to Barrier 0 Road Grade: 0 Barrier (0=wall, 1= berm): 0 Average Daily Traffic: 8028 Receiver Barrier Dist: Peak Hour Traffic: 802.8 0 Centerline Dist. To Observer: Vehicle Speed: 100 25 Barrier Near Lane CL Dist: 0 Centerline Separation: 24 **NOISE INPUTS** Barrier Far lane CL Dist: 0 Site conditions HARD SITE Pad Elevation: 0.5 Road Elevation: 0 **FLEET MIX** Observer Height (above grade): 0 Day Evening Night Daily Type 0.9742 Barrier Height: 0 Auto 0.775 0.129 0.096 Rt View: 90 Lft View: -90 Med. Truck 0.848 0.049 0.103 0.0184 **NOISE SOURCE ELEVATIONS (Feet)** Heavy Truck 0.865 0.027 0.108 0.0074 Autos: Medium Trucks: 2.3

UNMITIGATED NOISE LEVELS (No topographic or barrier attenuation)										
Vehicle Type	Peak Leq	Leq Day	Leq Evening	Evening Leq Night		CNEL				
Autos:	44.9	53.6	51.8	45.8	54.4	55.0				
Medium Trucks:	56.5	48.4	42.1	40.5	49.0	49.2				
Heavy Trucks:	62.7	50.7	41.7	42.9	53.3	53.4				
Vehicle Noise:	65.3	56.9	52.8	49.0	57.5	57.9				

8

MITIGATED NOISE LEVELS (With topographic or barrier attenuation)										
Vehicle Type	Peak Leq	Leq Day	Leq Evening	Leq Night	Ldn	CNEL				
Autos:										
Medium Trucks:										
Heavy Trucks:										
Vehicle Noise:										

CENTERLINE NOISE CONTOUR						
Unmitigated						
60 dBA	69					
65 dBA	22					
70 dBA	7					
Mitigated						
60 dBA						
65 dBA						
70 dBA						

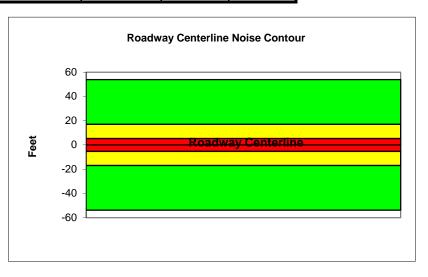


		al Highway Adr c Noise Predict							
Project Name:	Capitola General Plan								
•	Ryan Chiene			Job #:	70-100329				
•	Capitola Avenue								
•	Stockton Ave to Monte	erey Ave							
· ·	PROJECT DATA	•		S	SITE DATA				
Centerline Dist to Ba	arrier	0	Road Grade:		0				
Barrier (0=wall, 1= b	erm):	0	Average Dail	y Traffic:	7676				
Receiver Barrier Dis	t:	0	Peak Hour Ti	affic:	767.6				
Centerline Dist. To C	Observer: 10	0	Vehicle Speed:		25				
Barrier Near Lane C	L Dist:	0	Centerline Se	eparation:	22				
Barrier Far lane CL I	Dist:	0		NO	ISE INPUT	S			
Pad Elevation:	0.	5	Site condition	is HARD SI	TE				
Road Elevation:	(0		F	LEET MIX				
Observer Height (ab	ove grade):	0	Туре	Day	Evening	Night	Daily		
Barrier Height:		0	Auto	0.775	0.129	0.096	0.9742		
Rt View: 90	Lft View:	-90	Med. Truck	0.848	0.049	0.103	0.0184		
NOISE SO	URCE ELEVATIONS	(Feet)	Heavy Truck	0.865	0.027	0.108	0.0074		
Autos:		0							
Medium Trucks:	2.	3							
Heavy Trucks:		8							

UNMITIG	UNMITIGATED NOISE LEVELS (No topographic or barrier attenuation)										
Vehicle Type Peak Leq Leq Day Leq Evening Leq Night Ldn											
Autos:	44.7	53.5	51.7	45.6	54.3	54.9					
Medium Trucks:	56.3	48.3	41.9	40.3	48.8	49.0					
Heavy Trucks:	62.5	50.6	41.5	42.7	53.1	53.2					
Vehicle Noise:	65.2	56.7	52.7	48.9	57.4	57.8					

MITIGATED NOISE LEVELS (With topographic or barrier attenuation)										
Vehicle Type Peak Leq Leq Day Leq Evening Leq Night Ldn CNI										
Autos:										
Medium Trucks:										
Heavy Trucks:										
Vehicle Noise:										

CENTERLINE NOISE CONTOUR						
Unmitigated						
60 dBA	66					
65 dBA	21					
70 dBA	7					
Mitigated						
60 dBA						
65 dBA						
70 dBA						

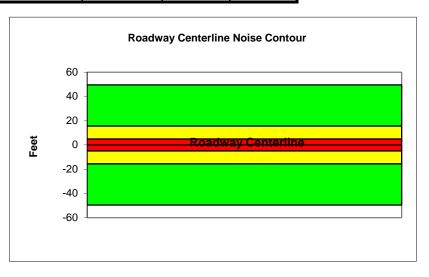


		Federal Highwa							
Drain at Name	Conitale Co	Traffic Noise P	redicti	ion Model (C		F. 141 1110			
Project Name:	Capitola Ge				Scenario:				
Analyst:	Ryan Chien				Job #:	70-100329			
Roadway:	Monterey Av								
Road Segment:	Washburn A	ve to Bay Ave							
	PROJECT I	DATA			5	SITE DATA			
Centerline Dist to	Barrier	0		Road Grade:		0			
Barrier (0=wall, 1=	= berm):	0		Average Dail	y Traffic:	6286			
Receiver Barrier D	Dist:	0		Peak Hour Traffic:		628.6			
Centerline Dist. To	Observer:	100		Vehicle Speed: 25					
Barrier Near Lane	CL Dist:	0		Centerline Separation: 20					
Barrier Far lane C	L Dist:	0		NOISE INPUTS					
Pad Elevation:		0.5		Site condition	is HARD S I	TE			
Road Elevation:		0			F	LEET MIX			
Observer Height (above grade):	0		Туре	Day	Evening	Night	Daily	
Barrier Height:		0		Auto	0.775	0.129	0.096	0.9742	
Rt View: 9	0	Lft View:	-90	Med. Truck	0.848	0.049	0.103	0.0184	
NOISE S	NOISE SOURCE ELEVATIONS (Feet)				0.865	0.027	0.108	0.0074	
Autos:		0					•		
Medium Trucks:		2.3							

UNMITIG	UNMITIGATED NOISE LEVELS (No topographic or barrier attenuation)										
Vehicle Type	Peak Leq	Leq Day	Leq Evening	Leq Night	Ldn	CNEL					
Autos:	43.9	52.6	50.9	44.8	53.4	54.0					
Medium Trucks:	55.5	47.4	41.1	39.5	48.0	48.2					
Heavy Trucks:	61.7	49.7	40.7	41.9	52.3	52.4					
Vehicle Noise:	64.3	55.9	51.8	48.0	56.5	56.9					

MITIGATED NOISE LEVELS (With topographic or barrier attenuation)										
Vehicle Type Peak Leq Leq Day Leq Evening Leq Night Ldn C										
Autos:										
Medium Trucks:										
Heavy Trucks:										
Vehicle Noise:										

CENTERLINE NOISE CONTOUR						
Unmitigated						
60 dBA	54					
65 dBA	17					
70 dBA	5					
Mitigated						
60 dBA						
65 dBA						
70 dBA						

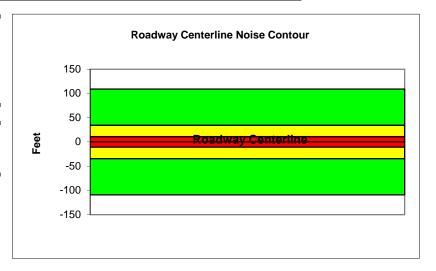


	Federal Highway Administration RD-77-108 Traffic Noise Prediction Model (CALVENO)								
Project Name:	Capitola Ge			,	Scenario:	Future			
Analyst:	Ryan Chien	е			Job #:	70-100329			
Roadway:	Monterey A	venue							
Road Segment:	-	Park Avenue							
_	PROJECT	DATA			S	SITE DATA			
Centerline Dist to E	Barrier	0		Road Grade:		0			
Barrier (0=wall, 1=	berm):	0		Average Dail	y Traffic:	5778			
Receiver Barrier D	ist:	0		Peak Hour Tr	raffic:	577.8			
Centerline Dist. To	Observer:	100		Vehicle Speed: 25					
Barrier Near Lane	CL Dist:	0		Centerline Separation: 24					
Barrier Far lane CL	_ Dist:	0			NO	ISE INPUT	S		
Pad Elevation:		0.5		Site condition	ns HARD SI	TE			
Road Elevation:		0			F	LEET MIX			
Observer Height (a	above grade):	0		Туре	Day	Evening	Night	Daily	
Barrier Height:		0		Auto	0.775	0.129	0.096	0.9742	
Rt View: 90)	Lft View:	-90	Med. Truck	0.848	0.049	0.103	0.0184	
NOISE S	OURCE ELE	VATIONS (Feet)		Heavy Truck	0.865	0.027	0.108	0.0074	
Autos:		0							
Medium Trucks:		2.3							
Heavy Trucks:		8							

UNMITIGATED NOISE LEVELS (No topographic or barrier attenuation)							
Vehicle Type	Peak Leq	Leq Day	Leq Evening	Leq Night	Ldn	CNEL	
Autos:	43.4	52.2	50.4	44.3	53.0	53.6	
Medium Trucks:	55.1	47.0	40.6	39.1	47.5	47.8	
Heavy Trucks:	61.2	49.3	40.2	41.5	51.8	52.0	
Vehicle Noise:	63.9	55.5	51.4	47.6	56.1	56.5	

MITIGATED NOISE LEVELS (With topographic or barrier attenuation)							
Vehicle Type	Peak Leq	Leq Day	Leq Evening	Leq Night	Ldn	CNEL	
Autos:							
Medium Trucks:							
Heavy Trucks:							
Vehicle Noise:							

CENTERLINE NOISE CONTOUR				
Unmitigated				
60 dBA	50			
65 dBA	16			
70 dBA	5			
Mitigated				
60 dBA				
65 dBA				
70 dBA				


		Fodoral Highw	ov Adn	ninictration F	D 77 100			
		Federal Highwa Traffic Noise P						
Project Name:	Capitola Ge		- Cuilot		Scenario:	Future		
Analyst:	Ryan Chien	e			Job #:	70-100329		
Roadway:	Monterey A	venue						
Road Segment:	Park Ave to	Capitola Ave						
	PROJECT	DATA			5	ITE DATA		
Centerline Dist to	Barrier	0		Road Grade:		0		
Barrier (0=wall, 1=	= berm):	0		Average Dail	y Traffic:	12709		
Receiver Barrier [Dist:	0		Peak Hour Ti	raffic:	1270.9		
Centerline Dist. To	o Observer:	100		Vehicle Speed:		25		
Barrier Near Lane	CL Dist:	0		Centerline Se	eparation:	22		
Barrier Far lane C	L Dist:	0			NO	ISE INPUT	S	
Pad Elevation:		0.5		Site condition	ns HARD S I	TE		
Road Elevation:		0			F	LEET MIX		
Observer Height (above grade):	0		Туре	Day	Evening	Night	Daily
Barrier Height:		0		Auto	0.775	0.129	0.096	0.9742
Rt View: 9	0	Lft View:	-90	Med. Truck	0.848	0.049	0.103	0.0184
NOISE S	SOURCE ELE	VATIONS (Feet)		Heavy Truck	0.865	0.027	0.108	0.0074
Autos:		0						
Medium Trucks:		2.3						

UNMITIGATED NOISE LEVELS (No topographic or barrier attenuation)										
Vehicle Type	Peak Leq	Leq Day	Leq Evening	Leq Night	Ldn	CNEL				
Autos:	46.9	55.7	53.9	47.8	56.4	57.1				
Medium Trucks:	58.5	50.5	44.1	42.5	51.0	51.2				
Heavy Trucks:	64.7	52.7	43.7	44.9	55.3	55.4				
Vehicle Noise:	67.3	58.9	54.9	51.0	59.6	60.0				

MITIGATED NOISE LEVELS (With topographic or barrier attenuation)											
Vehicle Type	Peak Leq	Leq Day	Leq Evening	Leq Night	Ldn	CNEL					
Autos:											
Medium Trucks:											
Heavy Trucks:											
Vehicle Noise:											

CENTERLINE NOISE CONTOUR								
Unmitigated								
60 dBA	109							
65 dBA	35							
70 dBA	11							
Mitigated								
60 dBA								
65 dBA								
70 dBA								

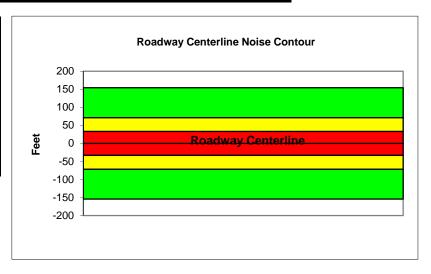
Heavy Trucks:

Federal Highway Administration RD-77-108 **Traffic Noise Prediction Model (CALVENO)** Project Name: Capitola General Plan Scenario: Future Job #:

Analyst: Ryan Chiene Roadway: Park Avenue

Heavy Trucks:

Road Segment: NB SR-1 Ramps to Kennedy Drive


PROJECT DATA SITE DATA Centerline Dist to Barrier: 0 Road Grade: 0 Barrier (0=wall, 1= berm): 0 Average Daily Traffic: 28894 Receiver Barrier Dist: Peak Hour Traffic: 2889.4 0 Centerline Dist. To Observer: Vehicle Speed: 100 30 Barrier Near Lane CL Dist: 0 Centerline Separation: 24 **NOISE INPUTS** Barrier Far lane CL Dist: 0 Site conditions:SOFT SITE Pad Elevation: 0.5 Road Elevation: 0 **FLEET MIX** Observer Height (above grade): 5.5 Day Evening Night Daily Type Barrier Height: 0.9742 Auto 0.775 0.129 0.096 0 Rt View: 90 Lft View: -90 Med. Truck 0.848 0.049 0.103 0.0184 **NOISE SOURCE ELEVATIONS (Feet)** Heavy Truck 0.865 0.027 0.108 0.0074 Autos: Medium Trucks: 2.3

UNMITIGATED NOISE LEVELS (No topographic or barrier attenuation)										
Vehicle Type	Peak Leq	Leq Day	Leq Evening	Leq Night	Ldn	CNEL				
Autos:	49.8	58.5	56.8	50.7	59.3	59.9				
Medium Trucks:	60.4	52.3	45.9	44.3	52.8	53.1				
Heavy Trucks:	66.0	54.1	45.0	46.2	56.4	56.5				
Vehicle Noise:	68.5	61.0	57.5	53.2	61.7	62.1				

8

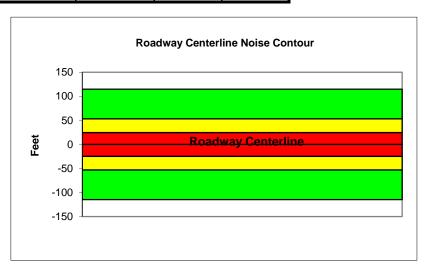
MITIGATED NOISE LEVELS (With topographic or barrier attenuation)									
Vehicle Type Peak Leq Leq Day Leq Evening Leq Night Ldn CNEL									
Autos:									
Medium Trucks:									
Heavy Trucks:									
Vehicle Noise:									

CENTERLINE NOISE CONTOUR							
Unmitigated							
60 dBA	154						
65 dBA	72						
70 dBA	33						
Mitigated							
60 dBA							
65 dBA							
70 dBA							

70-100329

	Federal Highway Traffic Noise Pre						
Project Name: C	Capitola General Plan	CUICG	OII WOUGH (O	Scenario:	Future		
•	Ryan Chiene			Job #:	70-100329		
•	Park Avenue						
•	Kennedy Drive to Coronado S	Street					
PRC	DJECT DATA			S	SITE DATA		
Centerline Dist to Barrier	r: 0		Road Grade:		0		
Barrier (0=wall, 1= berm)): 0		Average Dail	y Traffic:	13278		
Receiver Barrier Dist:	0		Peak Hour T	raffic:	1327.8		
Centerline Dist. To Obse	erver: 100		Vehicle Spee	ed:	35		
Barrier Near Lane CL Dis	st: 0		Centerline Se	eparation:	20		
Barrier Far lane CL Dist:	0			NO	ISE INPUT	S	
Pad Elevation:	0.5		Site condition	ns: SOFT SI	TE		
Road Elevation:	0			F	LEET MIX		
Observer Height (above	grade): 5.5		Туре	Day	Evening	Night	Daily
Barrier Height:	0		Auto	0.775	0.129	0.096	0.9742
Rt View: 90	Lft View:	-90	Med. Truck	0.848	0.049	0.103	0.0184
NOISE SOURC	CE ELEVATIONS (Feet)		Heavy Truck	0.865	0.027	0.108	0.0074
Autos:	0						

UNMITIGATED NOISE LEVELS (No topographic or barrier attenuation)									
Vehicle Type Peak Leq Leq Day Leq Evening Leq Night Ldn									
Autos:	48.4	57.2	55.4	49.3	58.0	58.6			
Medium Trucks:	58.1	50.1	43.7	42.1	50.6	50.8			
Heavy Trucks:	63.4	51.4	42.4	43.6	53.5	53.6			
Vehicle Noise:	65.8	59.2	56.0	51.3	59.9	60.3			


2.3

8

MITIGATED NOISE LEVELS (With topographic or barrier attenuation)									
Vehicle Type Peak Leq Leq Day Leq Evening Leq Night Ldn CNEL									
Autos:									
Medium Trucks:									
Heavy Trucks:									
Vehicle Noise:									

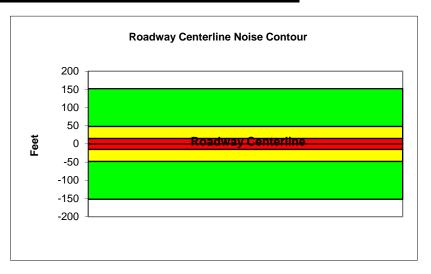
CENTERLINE NOISE CONTOUR								
115								
53								
25								

Medium Trucks: Heavy Trucks:

Federal Highway Administration RD-77-108 Traffic Noise Prediction Model (CALVENO) Project Name: Capitola General Plan Scenario: Future Analyst: Ryan Chiene Job #: 70-100329 Roadway: Park Ave

Road Segment: Coronado Street to Monterey Ave

PROJECT	DATA		SITE DATA				
Centerline Dist to Barrier	0		Road Grade: 0				
Barrier (0=wall, 1= berm):	0		Average Dail	y Traffic:	12310		
Receiver Barrier Dist:	0		Peak Hour Ti	raffic:	1231		
Centerline Dist. To Observer:	100		Vehicle Spee	ed:	30		
Barrier Near Lane CL Dist:	0		Centerline Se	eparation:	22		
Barrier Far lane CL Dist:	0			NO	ISE INPUT	S	
Pad Elevation:	0.5		Site condition	ns HARD SI	TE		
Road Elevation:	0			F	LEET MIX		
Observer Height (above grade):	0		Туре	Day	Evening	Night	Daily
Barrier Height:	0		Auto	0.775	0.129	0.096	0.9742
Rt View: 90	Lft View:	-90	Med. Truck	0.848	0.049	0.103	0.0184
NOISE SOURCE ELE	VATIONS (Feet)		Heavy Truck	0.865	0.027	0.108	0.0074
Autos:	0						
Medium Trucks:	2.3						


UNMITIGATED NOISE LEVELS (No topographic or barrier attenuation)						1)
Vehicle Type	Peak Leq	Leq Day	Leq Evening	Leq Night	Ldn	CNEL
Autos:	49.0	57.8	56.0	49.9	58.6	59.2
Medium Trucks:	59.6	51.6	45.2	43.6	52.1	52.3
Heavy Trucks:	65.3	53.3	44.3	45.5	55.6	55.8
Vehicle Noise:	67.8	60.3	56.7	52.4	61.0	61.4

8

MITIGATED NOISE LEVELS (With topographic or barrier attenuation)							
Vehicle Type Peak Leq Leq Day Leq Evening Leq Night Ldn CNEL							
Autos:							
Medium Trucks:							
Heavy Trucks:							
Vehicle Noise:							

CENTERLINE NOISE CONTOUR			
Unmitigated			
60 dBA	152		
65 dBA	48		
70 dBA	15		
Mitigated			
60 dBA			
65 dBA			
70 dBA			

Heavy Trucks:

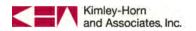
APPENDIX D

TRAFFIC

.....

APPENDIX D1:
TRANSPORTATION AND
PARKING WHITE PAPER

.....


City of Capitola General Plan

White Paper # 3 Transportation & Parking

Prepared by

and

Table of Contents

Introduction	- 1
Circulation	1
Existing Roadway Network	1
Principal Arterials (Freeways) and Interchanges	4
Arterials	6
Local (Neighborhood) Streets	6
Existing Traffic Volumes	7
Traffic Safety	9
Trucking and Goods Movements	10
Transit Services	11
Non-vehicular Transportation	13
Bicycle Network	13
Planned Bikeway Improvements	15
Pedestrian Access	16
Sidewalk Networks	16
Pedestrian Access in Capitola	
Existing Sidewalk Maintenance Program	
Rail Corridor	19
Rail Corridor	20
Policies and Regulations	22
State and Regulations	22
California Complete Streets Act (AB 1358)	22
Association of Monterey Bay Area Government	
Santa Cruz County Regional Transportation Commission	23
City of Capitola	24
Special Study Areas	26
41st Avenue	26
Capitola Village	28

Parking Supply	28
Occupancy	31
Demand	31
Pacific Cove Parking Garage	
Parking Management	
Bay Avenue	35
References	39
Appendices	
A. Capitola Redevelopment Agency – Capital Improvement Program, Fiscal Year 201	0-11
B. City of Capitola Report on Parking Expansion (April 2010)	
List of Figures	
Figure 3-1: Existing Roadway Network	2
Figure 3-2: Highway I Interchanges in Capitola	5
Figure 3-3: Existing Traffic Volumes	8
Figure 3-4: Bus Transit Routes	12
Figure 3-5: Capitola Bikeways	14
Figure 3-6: Capitola Sidewalk Inventory	18
Figure 3-7: Capitola Rail Corridor	21
Figure 3-8: Capitola Special Study Areas	27
Figure 3-9: Capitola Village Area Parking Program	29
Figure 3-10: Pacific Cove Parking Garage Conceptual Illustration	33
Figure 3-11: Bay Avenue/Capitola Avenue Intersection Single Roundabout Concept	37
Figure 3-12: Bay Avenue/Capitola Avenue Intersection Dual Roundahout Concept	38

List of Tables

Table 3-1:	Capitola Street Classifications	3
Table 3-2:	Traffic Accidents in Capitola (2008 - 2010)	10
Table 3-3:	Intersection Level of Service Definitions	25
Table 3-4:	Capitola Village Parking Meter Strategy	28
Table 3-5:	Current and Future Parking Demand in Capitola Village	31

Introduction

This white paper addresses traffic and transportation in Capitola. Topics addressed include circulation, traffic safety, trucking and goods movements, transit services, and non-vehicular transportation (bike, pedestrian and train). This white paper also discusses traffic and transportation issues associated with the three Special Study Areas, namely, 41st Avenue/Capitola Mall, Capitola Village, and Bay Avenue.

A particular focus has been given to parking in Capitola as it is of critical concern to the City and the community. Parking issues in the Village are discussed in the Capitola Village Special Study Area section.

Traffic and parking have long been an issue in Capitola

Circulation

Existing Roadway Network

The existing roadway network in Capitola consists of freeways, arterials, collectors and local streets. In the past, streets have often been classified by their function, commonly referred to as the functional classification system (FCS). This traditional FCS is based on the mobility and access functions of roads for motor vehicle traffic. The FCS allows traffic/transportation engineers to properly design roads. Each class (category) of road has certain design guidelines. These guidelines ensure safety, ease of maneuverability and therefore dictates the cost of construction.

Street classifications are described in Table 3-1: Capitola Street Classifications and are illustrated in Figure 3-1: Existing Roadway Network.

Source: City of Capitola and RBF Consulting, 2011.

EXISTING ROADWAY NETWORK

Table 3-1: Capitola Street Classifications

Street Classification	Description	Existing Average Daily Traffic Range	Capitola Streets ²
Principal Arterial (Freeway)	Serves major centers of activity with the highest traffic volumes and longest trip lengths. Integrated internally and between major rural connections. Service to abutting lands is subordinate to travel service to major traffic movements. Design types are interstate, other freeways and other principal arterials.	> 80,000	Highway I
Arterial	Trips of moderate length at a lower level of mobility than principal arterials. Some emphasis on land access. Often carry local bus routes and provide intracommunity continuity but does not access neighborhoods.	6,500 to 45,000	41st Avenue, Gross Road from Soquel Avenue to 41st, Clares Street west of 41st, Brommer Street, Bay Avenue, Capitola Road, East Cliff, Capitola Avenue south of Bay, Monterey Avenue south of Bay and Park Avenue.
Minor Arterials	Provides both land access and traffic circulation within all areas. Accesses neighborhoods and communities collecting and distributing traffic between neighborhoods and the arterial streets.	800 to 4,500	Clares Street (east of 41st), Wharf Road, 38th Avenue, Capitola Avenue (north of Bay), Monterey Avenue (north of Bay) and Kennedy Drive
Local Streets	Primarily permits direct land access and connections to the higher order streets. Lowest level of mobility. Through traffic is usually deliberately discouraged.	~< 2,000	All other streets.

Notes:

It is important to note that these are the classifications and volumes as defined by the current Capitola General Plan. However, these traffic volumes are no longer consistent with standard FCS practices. As such, a task for the General Plan Update will be to work with City staff to redefine Capitola's roadways according to the FCS. In doing so, the opportunity exists to define the roadway system not strictly to motorized vehicles. Streets

 $I.\ Average\ Daily\ Traffic\ (ADT)\ volumes\ are\ derived\ from\ the\ Santa\ Cruz\ County\ Regional\ Transportation\ Commission\ (SCCRTC)\ and\ applied\ to\ the\ City\ of\ Capitola\ existing\ General\ Plan\ street\ classifications.$

^{2.} As defined by the existing Capitola General Plan, 1989.

Source: City of Capitola, SCCRTC, and RBF Consulting, 2011.

and roads, particularly in an urban area, are multi-modal transportation corridors and serve more functions than that of vehicular mobility and access.

As part of the General Plan Update process, an alternative classification system for Capitola streets will be developed to better integrate the road, and its design, into the urban fabric. Alternative classification systems that take into account the variety of functions and users of the road allowance will be considered. This is consistent with the requirement to incorporate "Complete Streets" concepts into the transportation element of a general plan as required under the California Complete Streets Act (AB 1358), which is discussed below in Policies and Regulations.

Principal Arterials (Freeways) and Interchanges

Freeways are designed to carry high volumes of traffic at very high travel speeds. Travel along freeways is generally unimpeded and provides inter-regional and inter-state travel for passenger cars and commercial vehicles.

Highway I is the only freeway within Capitola. There are three freeway interchanges providing access to Capitola from Highway I. These interchanges are located at 41st Avenue, Bay Avenue/Porter Street, and Park Avenue (see Figure 3-2: Highway I Interchanges in Capitola). The 41st Avenue interchange is one of the busiest in Santa Cruz County. The bridge over Highway I contains two northbound lanes and three southbound lanes and pedestrian sidewalks and bike lanes on both sides. During peak periods, between I2 and 2 PM, and on weekends, this interchange becomes very congested and operates at or near its capacity. At both the Bay Avenue/Porter Street and Park Avenue interchanges, north-south access is via an underpass under Highway I.

Additionally, two roadways provide through access north across Highway I to Soquel. Soquel-Wharf Road passes under Highway I east of 41st Avenue and Capitola Road passes over Highway I east of Bay Avenue/Porter Street.

Highway I HOV Lane Widening Project

The Santa Cruz Country Regional Transportation Commission (SCCRTC) in partnership with California Department of Transportation (Caltrans) and the Federal Highway Administration (FHWA) have developed project alternatives to reduce congestion and improve safety and traffic operations on Highway I between Aptos and Santa Cruz. The Highway I HOV Lane Widening Project extends approximately 8.5 miles along Highway I from San Andreas/Larkin Valley Road to just north of Morrissey Boulevard. This project includes work on all sections of Highway I within Capitola and will modify the existing interchanges at 41st Avenue and Bay Avenue/Porter Street into a single interchange with local one-way roadways connecting the arterials. The overpass at 41st Avenue will be reconstructed as will the overpass for Capitola Avenue. The on/off ramps at each interchange will be reconfigured and include ramp metering. Sound walls will be included where necessary to mitigate noise from the highway.

Source: Google Maps and RBF Consulting, 2011.

HIGHWAY I INTERCHANGES IN CAPITOLA

In June 2003, work began with Caltrans and the Federal Highway Administration on the preparation of an Environmental Impact Report and Environmental Assessment (EIR/EA) on the Highway I High Occupancy Vehicle (HOV) Lane Project. In September 2006, additional public information meetings were held to share information developed to date on the preliminary design plans, traffic performance measures, and environmental studies. Further detailed project design and environmental data, including the EIR/EA is in development and is planned to be made available in early 2012. Funding is not secured to advance the project beyond the current environmental study. The 2010 Regional Transportation Plan assumes adoption of a transportation sales tax measure to provide a significant amount of the funding needed to advance this project into the next development phase – final design, right-of-way, and construction.

Arterials

Arterials provide regional connectivity and relatively unimpeded traffic flow for both passenger cars and commercial vehicles. These facilities have high vehicle capacities and travel at relatively high speeds (i.e., > 35 mph). Access to arterials is limited by intersection spacing and driveway locations. Arterials can be classified as either major or minor arterials.

41st Avenue is the primary north-south arterial in Capitola and is one of the busiest roadways in Santa Cruz County. The City has worked with Santa Cruz County and Caltrans on a number of improvement projects to help improve traffic and traffic safety conditions on this roadway. The most significant project was the reconfiguration of 41st Avenue between the Highway I overpass and Capitola Road. This phased rehabilitation project includes the construction of additional lanes, sidewalk improvements, lane restripping, the inclusion of bike lanes and the installation of cameras at key intersections.

A traffic calming improvement project is also being completed on Capitola Road east of 41st Avenue. This project includes the construction of traffic islands and pedestrian crosswalks. Other pending budgeted projects include 38th Avenue repaving, which includes the addition of bike lanes on both sides of the street and Clares Street streetscape improvements between 41st and Wharf Road.

As part of the redevelopment of the Nob Hill shopping center, Bay Avenue at Hill Street was improved with a reconstructed 4-way stop and pedestrian crosswalks, as well as sidewalk improvements.

Local (Neighborhood) Streets

Local or neighborhood streets support low traffic volumes and slow travel speeds, typically in residential areas. They provide direct access to properties and connect to the higher capacity roadway network. Design guidelines of these roadways are designed to minimize travel speed, promote pedestrian safety, and prohibit cut through traffic. Access locations are generally very close together (approximately 500 foot spacing).

Over the years, Capitola has developed from a pre-automobile beach-side summer camp with tents and cottages to a full service community of 1.6 square miles with a year round population near 10,000. Further, surrounding communities have developed along with Capitola so that the demands on the highways and roads have increased not only with Capitola growth, but also with the growth experienced throughout Santa Cruz County. Moreover, reliance on the automobile has, and continues to be, the dominant mode of transportation. In addition to increases in population, our automotive traffic has increased as a result of a long-term trend toward more trips and vehicle miles traveled by individual households.

Given these conditions, traffic congestion has increased dramatically, which has resulted in increased trip times. All of these factors have forced drivers to seek "short cuts" through open residential streets, and drive at a higher speed when given the opportunity. As a result, neighborhoods today in Capitola are experiencing more traffic, hearing more traffic noise, and are bearing more traffic-related impacts.

In January 2001, the City established the Neighborhood Advisory Traffic Committee (NATC). The NATC conducted a survey and identified and ranked the problems that were most important in the neighborhoods. Based on the results of the questionnaires, the top citywide concerns of the residents were the speed and volume of traffic through the neighborhoods. To address these concerns, the NATC identified a number of traffic improvements throughout Capitola. Many of these improvements have been completed. Those that are still unfunded, along with other programmed (funded) and non-programmed general street improvement projects are identified in Appendix A - Capitola Redevelopment Agency — Capital Improvement Program, Fiscal Year 2010-11

Existing Traffic Volumes

Figure 3-3: Existing Traffic Volumes shows the total average daily trips (ADTs) of vehicles on selected roads in and around Capitola. These volumes were determined by the Santa Cruz County Regional Transportation Commission (SCCRTC), which is responsible for acquiring traffic count data for all major roadways in Santa Cruz County with the exception of State designated roadways (e.g. Highways I and I7). The ADTs are illustrated using color-coded lines, with red being the highest volumes, followed by orange and then yellow. Specific count data and the year of the count (shown in parentheses) is shown numerically at designated intersections and along roadway segments.

It should be noted that this white paper only addresses traffic volumes at a quantified level. As part of the work on the General Plan, the consultant team will analyze the existing and future capacity of existing roadways (Level of Service [LOS] analysis) based on build-out projections as derived from the General Plan land use map.

Source: Santa Cruz County Regional Transportation Commission Monitoring Program (non-highway traffic counts) and Caltrans (state highway counts), 2011.

EXISTING TRAFFIC VOLUMES

Three interchanges on Highway I provide access to Capitola with the busiest being 41st Avenue. This major arterial carries approximately 44,000 vehicles per day just south of the freeway and provides access to the Capitola Mall, Kings Plaza, other commercial and office developments, and also connects to the surrounding neighborhoods. The other two Highway I interchanges are Bay Avenue, which carries about 20,000 daily vehicles, and Park Avenue, which carries about 8,300 vehicles.

During the weekday, the primary purpose of trips in Capitola includes home-based work activities and shopping trips. On weekends, the retail activities along 41st Avenue and Bay Avenue result in increased traffic volumes on the roadways. During the summer months, the Capitola Village and Capitola Beach is a primary destination for local residents and visitors. On warm sunny weekends as many as 1,333people visit Capitola Beach, which results in considerable traffic congestion in Capitola Village (RBF Consulting 2008).

Intersections along 41st Avenue operate at congested conditions particularly from Capitola Road north to Highway I. Additionally, the intersection of Bay Avenue and Capitola Avenue is also congested, especially when New Brighten Middle School closes in the afternoon. Skew geometry (lane configuration adjustments) and high pedestrian and bicycle activity adds to confusion and causes increased delays at these intersections.

During the PM peak hour, traffic through the Village consists of local residents cutting through the Village to Monterey Avenue, Capitola Avenue and Stockton Avenue-Cliff Drive. Stockton Avenue is the only road in Capitola, other than Highway I, that crosses over Soquel Creek, essentially dividing Capitola in two from a traffic circulation standpoint. The Village also experiences high congestion because of the desire of visitors to park close to Capitola Beach. Vehicles often circulate around the block several times looking for parking spaces, which adds significantly to the traffic congestion.

Other major streets that carry high traffic volumes are Capitola Road (13,000 vehicles per day just east of 41st Avenue and 6,600 vehicles north from City Hall), Portola Drive (13,000 vehicles west of 41st Avenue), and on Wharf Road south of Capitola Road (10,100 vehicles).

Traffic Safety

Traffic safety in Capitola is recorded on a per incidence basis by the Capitola Police Department. Between 2008 and 2010, the total number of accidents has decreased by 18% from 257 to 211. A significant number of accidents have been non-injury accidents. On average, there are about 30 injury accidents in Capitola every year. A summary of all

reported accidents by type are described in Table 3-2: Traffic Accidents in Capitola (2008 - 2010), below. 1

A majority of these accidents occur on arterial roads. In 2010, 38% of all collisions occurred on 41st Avenue, up from 29% in 2008. The most common collision factor was unsafe speeds given the conditions. Other roadways of concern include Wharf Road to Clares Street to the Capitola Mall, which is used as an alternative route to 41st Avenue, the Clares Street "loop", and Park Avenue. ²

	2008	2009	2010	% Change 2008-10
Injury Collisions	26	33	32	23%
Non-Injury Accidents	159	133	129	-19%
Hit and Run	72	56	50	-31%
Total Accidents	257	222	211	-18%

Table 3-2: Traffic Accidents in Capitola (2008 - 2010)

Trucking and Goods Movements

Source: Capitola Police Department, February 2011.

The City does not have an ordinance in the City's Municipal Code that establishes designated truck routes. Truck routes restrict vehicles within a gross vehicle weight, are licensed commercially as a truck, and are used for carrying goods for pickup and delivery. Such an ordinance would require trucks to only drive on truck designated streets except when necessary for egress and ingress by direct route to and from a restricted street for the purposes of loading or unloading.

A majority of the existing truck traffic travels along the existing arterial roads, particularly 41st Avenue, Clares Street, Capitola Road, Bay Avenue, and Capitola Avenue and East Cliff Drive in and out of the Village. However, cut-through traffic on residential streets is an issue. For instance, trucks delivering materials to stores at Kings Plaza, located on the northeast corner of 41st Avenue and Capitola Road, often use 38th Avenue and travel south to Brommer Street, and then onto 41st Avenue. Cut-through truck traffic is also

¹ Capitola does not currently gather statistics on bicycle collisions and bicycle related citations so this information is not available to help assess bicycle safety issues related to the current roadway conditions.

² Personal communication, Matt Eller, Capitola Police Department, March 2011.

common on Reposa Street and Melton Street between 38th and 41st. The General Plan Update will consider the designation of official truck routes in Capitola.

Transit Services

Bus transit and paratransit (persons with disabilities) service in Capitola is provided by Santa Cruz Metropolitan Transit (Metro). Metro serves all of Santa Cruz County and the cities of Scotts Valley, Santa Cruz, Capitola, and Watsonville. Additionally. partners with Metro the Regional Transportation Commission (SCCRTC), the Association of Monterey Governments (AMBAG), UC Santa Cruz Transportation and Parking Services (TAPS), the Santa Clara Valley Transportation Authority (VTA) in overall transportation improvement planning and transit services.

As shown in Figure 3-4: Bus Transit Routes, there are 10 Metro transit lines that service Capitola. With the exception of Line 91x, all public transit lines stop at the Capitola Mall which serves as the primary mid-county transit hub. Three bus lines (53, 54, and 55) also serve Capitola Village.

It should be noted that given current funding constraints, Metro's board is considering a 30 percent service cut, which would reduce or eliminate routes to resolve a projected \$3.8 million deficit in the district's \$32 million budget during the next 15 months. This potential reduction in service would affect the number and frequency of bus service throughout Santa Cruz County, including Capitola.

Source: Santa Cruz METRO and RBF Consulting, 2011.

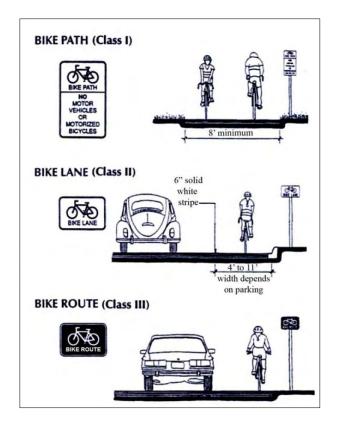
BUS TRANSIT ROUTES

Non-vehicular Transportation

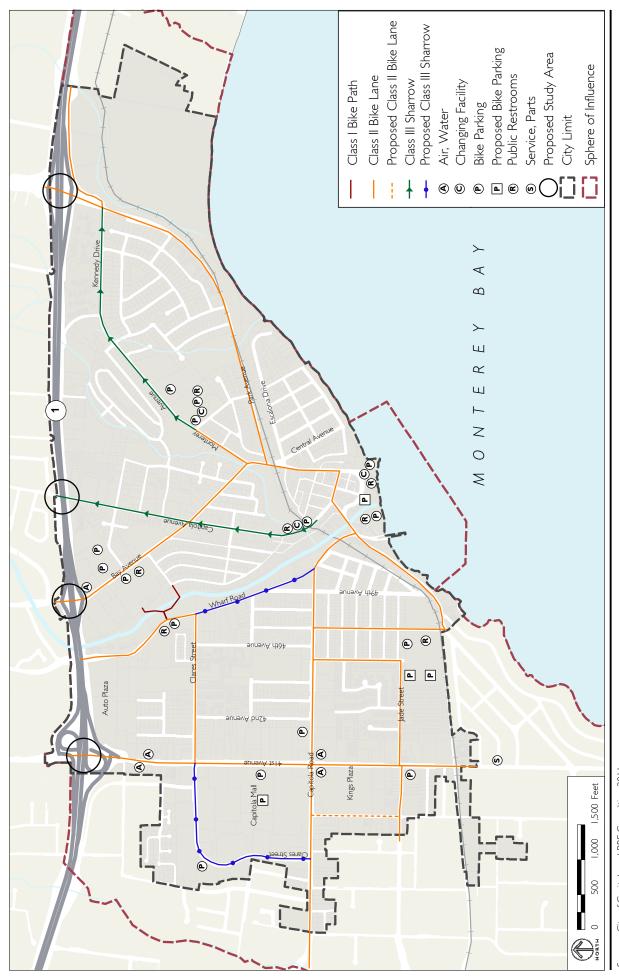
Bicycle Network

In February 2011, Capitola adopted an updated Bicycle Transportation Plan (BTP) (Capitola 2011a). The BTP sets goals and objectives for the purpose of increasing the safety and convenience of bicycle commuting in and around Capitola. It also implements the polices and programs of the Circulation Element of the Capitola General Plan.

In 2000, roughly one third of all commuters in Capitola had a less than 15 minute trip to work, which suggests that the distance traveled was likely less than 9 miles if driving at 35 mph, 2.5 miles if bicycling, or 1.25 miles if walking. All of these trips are achievable on a bicycle in less than one hour. By breaking down barriers to bicycle commuting, especially to those who live within 9 miles of work, the BTP identifies ways to improve bike ridership and achieve the BTP's goal of 5% of total trips and 20% of commuter trips by bicycle by the year 2020.


The BTP identifies a number of existing and proposed bikeways for Capitola, as shown in Figure 3-5: Capitola Bikeways.

"Bikeway" is a general term used to refer to facilities that primarily provide for bicycle travel. The Caltrans Bikeway Planning and Design section (Chapter 1000 of the State of California Highway Design Manual) categorizes bikeways into three types:


Class I Bikeways are generally referred to as Bike Paths and provide a completely separated right-of-way for the exclusive use of bicycle and pedestrian traffic with cross-flow minimized.

Class II Bikeways are referred to as Bike Lanes and provide a striped lane for one-way bike travel on a street or highway, and typically includes signs placed along the street segment.

Class III Bikeways are referred to as Bike Routes and provide a shared use with pedestrian or motor vehicle traffic. Typically these facilities are city streets with signage designating the segment for Bike Routes without additional striping or facilities. "Sharrows" are signed and painted bike routes that share the road with other vehicles.

Source: City of Capitola and RBF Consulting, 2011.

Planned Bikeway Improvements

The BTP has identified a number of bikeways improvement projects which are prioritized according to the following criteria:

- 1. High density, high demand areas and school routes;
- 2. Low density areas where cyclist's safety is a concern (neighborhoods); and
- 3. Recreational routes in low density, low demand areas.

High priority bicycle plan projects include the completion of bicycle lanes on existing streets, on-street bicycle safety improvements and studies, a bicycle safety and education program for students, and the installation of bicycle detector loops or video sensors at signalized intersections and replacement of antiquated or ineffective infrastructure. Other projects that improve bicycle facilities and encourage cycling include bicycle lane maintenance, parking facilities, and inter-modal connections, as well as studies to address unsafe areas for bicyclists. Specific projects by bikeway type (Class) are described below.

Bicycle Paths (Class I)

The current Class I bikeway in Capitola is a path that extends east from Wharf Road across Soquel Creek. This bicycle path allows bicyclists to enjoy Soquel Creek and the historic Rispin Mansion site. If the path was extended north to Soquel Elementary School alongside Soquel Creek, it would create a safe alternative to the Bay Avenue/Highway I intersection for students riding to and from school, and allow all cyclists the opportunity to enjoy the flora and fauna in the riparian area. The BTP recommends that a study be conducted to determine the feasibility of extending the path north along Soquel Creek toward Highway I.

Bicycle Lanes (Class II)

A number of Class II bike lanes exist throughout Capitola. These include designated lands along 41st Avenue, Capitola Road, Jade Street, Bay Avenue, Monterey Avenue, East Cliff Drive, and Park Avenue.

A 0.23 mile Class II bicycle lane is currently funded to be constructed on 38th Avenue between Capitola Road and Brommer Street in 2011 as part of a roadway resurfacing project.

Bicycle Routes (Class III)

Existing Class III bike routes (sharrows) are designated along Capitola Avenue and a portion of Monterey Avenue and Kennedy Drive.

In addition to re-stenciling existing sharrows, the City has also added sharrow markers on Clares Street near the Brown Ranch Shopping Center, and on Wharf Road between Clares Street and Grace Street.

Pedestrian Access

Pedestiran access, primarily via dedicated footpaths and sidewalks, are an important componnet of non-vehicular mobility, and more broadly, the quality of life in a community. Health related benefits, both physical and mental, result from living in a walkable community. Environmental and economic benefits also result from the ability to walk to important locations. In the past, home buyers have generally looked for good schools, large lots, and low crime rates. However, recent trends also consider walkability, bikeability and overall access-convenience of neighborhoods. It is widely accepted that a walkable community is likely to be a healthy, desirable and therefore a more valuable place to live.

Sidewalk Networks

Conditions arise in sidewalk networks that pose risks to pedestrians seeking to use them. These include broken and raised pavement, slopes with potential to tip wheelchairs and related mobility devices, vegetation that intrudes into the walkway, holes around trees, vehicles parked across sidewalks, and signs, poles, stands or benches that obstruct or narrow the path of travel.

When sidewalk networks are not consistently safe and accessible, residents may avoid use of the system. For the elderly and persons with disabilities, this may greatly restrict opportunities for involvement in neighborhood and community activities or may force reliance on the use of more costly transportation services such as paratransit.

For a sidewalk system to function properly it must connect to popular destination points within a community and provide ease of movement for pedestrians traveling into and around a community. Sidewalks that are major paths of travel make important connections within the jurisdiction and with networks of neighboring jurisdictions. These sidewalks tend to be located along major road corridors and connect to key community destinations. Neighborhood sidewalks systems normally serve local residents. They link to neighborhood parks, schools, shops, transit stops and the jurisdiction-wide pedestrian network. The objective of sidewalk maintenance is to have a seamless system, free of obstructions or missing segments, on which pedestrians feel safe and comfortable.

Pedestrian Access in Capitola

In July 2010, the Pedestrian Safety Work Group (a subcommittee of the Santa Cruz County Regional Transportation Commission's Elderly & Disabled Transportation Advisory Committee) published a report entitled "Improving the Safety and Accessibility of Sidewalks in Santa Cruz County". The goal of the report is to improve the condition of sidewalks throughout all jurisdictions in Santa Cruz County by evaluating current sidewalk maintenance program practices, identifying important potential program components and offering additional resources. The objective is to support jurisdictions in their efforts to achieve, within defined periods of time, sidewalk networks that are in compliance with jurisdiction standards for maintenance.

As described in Appendix A of the report, Capitola has about 26 miles of roadways, of which about 50% have sidewalks. All sidewalks are maintained by the City of Capitola Public Works Department (DPW), with the exception of the downtown where they are maintained by the property owners.

As shown in Figure 3-6: Capitola Sidewalk Inventory, there are many areas throughout Capitola that do not have adequate or complete sidewalk facilities. Most notably, this includes a variety of streets east of 41st Avenue and west of Wharf Road, a small neighborhood west of 41st Avenue and north of Clares Street (Deanes Lane and associated streets), various streets north and south of Bay Avenue, the residential neighborhood north of Capitola Village, a portion of Park Avenue, and the associated residential streets north of Park Avenue along McCormick Avenue.

While only approximately 50% of the Capitola streets have sidewalks, a significant majority of the collector and arterial streets do have sidewalks. This is notable given the fact that traffic travels at higher speeds on these roadways making sidewalks essential. On residential streets, cars travel more slowly, providing an opportunity for shared use of the roadway. For example in the City of Carmel, residential neighborhoods are considered very walkable and yet have no sidewalks. This is due in part to the narrow streets, which helps considerably in maintaining slow vehicular speeds (i.e. less than 25 miles per hour).

As discussed below, the development of "Complete Streets" in Capitola, that allow for all users to effectively travel by motor vehicle, foot, bicycle and transit, will be an essential policy issue that will be addressed in the General Plan update.

Source: City of Capitola, 2010.

CAPITOLA SIDEWALK INVENTORY

Existing Sidewalk Maintenance Program

Capitola has been informally inventorying sidewalks and pedestrian walkways since the early 1990s. In 2006 and again in 2008, the City Council of Capitola directed staff to implement sidewalk improvement programs. The 2006 initiative was in response to the need to remove vegetative obstructions; the 2008 initiative sought to more fully assess and address hazardous conditions. Since 2006, DPW has been inventorying one-fifth of the residential areas and all of the commercial areas on an annual basis, with the objective if understanding the total percentage of compliant sidewalks throughout the City.

DPW has a goal of 24 hours in response to a reported sidewalk hazards, which includes an inspection. If the uplift hazard is minor (i.e. less than half an inch), the City will grind the walkway. If not, DPW will notify the property owner of their responsibility to fix the problem. DPW staff will advise property owners of contractors who have insurance on file with the City and have done similar work. Property owners are required to complete repairs within 30 days of notification. Approximately 90% of the property owners comply with notices to correct hazards and understand that it is in their best interest to reduce their liability exposure. Right-of-way work requires an encroachment permit, typically provided at no cost by the City. The City also waives permit fees for sidewalk repair work. Action toward property owners that don't comply requires a public hearing per the city's municipal code. This process is unique among local jurisdictions and represents an onerous requirement and unnecessary hurdle to prompt resolution.

Examples of sidewalk barriers and maintenance issues are shown below:

Sidewalk uplift due to tree roots.

Utility cabinet obstructing sidewalk Source: SCCRTC 2010 and Ron Skelton, 2011.

Planting obstructing sidewalk

Large cracks in driveway

Rail Corridor

The Santa Cruz Branch rail line corridor parallels Highway I extending almost 32 miles from the town of Pajaro in Monterey County, to Davenport in Santa Cruz County. This line extends generally east to west through Capitola. As shown in Figure 3-7: Capitola Rail Corridor, within Capitola there are four at-grade crossings and two tressles, including a major crossing over Soquel Creek. The right-of-way is generally 50 to 60 feet wide.

Sierra Northern Railway (SNR), the freight carrier, operates trains

approximately twice per week on an as-needed basis to serve existing freight customers. SNR also stores empty tank cars on the unused northern section of the rail line. ³

On May 6, 2010, the Santa Cruz County Regional Transportation Commission (SCCRTC) unanimously agreed to acquire the Santa Cruz Branch Rail Line right-of-way for recreational rail, preservation, and future transportation uses. Future transportation uses could include passenger rail service, transit, bicycle and pedestrian facilities, and freight rail service.

On January 19, 2011, the California Transportation Commission (CTC) approved the funding for purchase of the Santa Cruz Branch Rail Line. The CTC determined that the SCCRTC met all of the requirements for use of the voter-approved Proposition 116 funds and cleared the way for the SCCRTC to close the purchase of the 32-mile corridor with the current property owner, Union Pacific Railroad.

SNR is proposing an excursion and dinner train service between the Main Beach/Wharf area of Santa Cruz and the community of Davenport, north of Santa Cruz. At present, no other recreational passenger rail service is being considered.

Additionally, the SCCRTC is in the early stages of developing a master plan for the Monterey Bay Sanctuary Scenic Trail Network. This planning process will analyze potential alignments for trails and trail segments along or near the coast. If segments of the rail line can adequately accommodate a trail segment along with rail service, those trail segments may be constructed on the rail line.

³ Personal communication with Cliff Walters, General Manger, Santa Cruz Division, Sierra Northern Railway, April 2011.

Source: RBF Consulting, 2011.

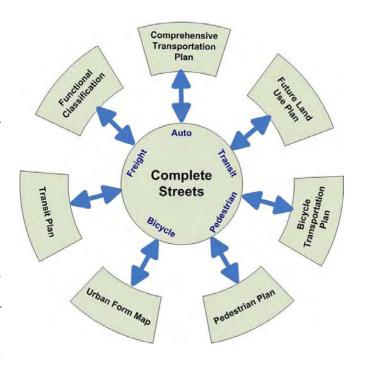
Policies and Regulations

State and Regulations

California Complete Streets Act (AB 1358)

AB 1358 places the planning, designing, and building of complete streets into the larger planning framework of the general plan by requiring jurisdictions to amend their circulation elements to plan for multimodal transportation networks. These networks should allow for all users to effectively travel by motor vehicle, foot, bicycle, and transit to reach key destinations within their community and the larger region. Local jurisdictions need to view all transportation projects, new or retrofit, as opportunities to improve safety, access, and mobility for all travelers and recognize pedestrian, bicycle, and transit modes as integral elements of their transportation system. The standard practice should be to construct complete streets while prioritizing project selection and project funding so that jurisdictions accelerate development of a balanced, multimodal transportation network.

Multimodal transportation networks allow for all modes of travel including walking, bicycling, and transit to be used to reach key destinations in a community and region safely and directly. Jurisdictions can use complete streets design to construct networks of safe streets that are accessible to all modes and all users no matter their age or ability. Complete streets have been defined by various organizations as follows:


National Complete Streets Coalition

"Complete streets are designed and operated to enable safe access for all users. Pedestrians, bicyclists, motorists and transit riders of all ages and abilities must be able to safely move along and across a complete street.

Creating complete streets means transportation agencies must change their orientation toward building primarily for cars. Instituting a complete streets policy ensures that transportation agencies routinely design and operate the entire right of way to enable safe access for all users."

American Planning Association

"Complete streets serve everyone – pedestrians, bicyclists, transit riders, and drivers – and they take into account the needs of people with disabilities, older people, and children. The complete streets movement seeks to change the way transportation agencies and communities approach every

street project and ensure safety, convenience, and accessibility for all."

Caltrans

"A transportation facility that is planned, designed, operated, and maintained to provide safe mobility for all users, including bicyclists, pedestrians, transit vehicles, truckers, and motorists, appropriate to the function and context of the facility. Complete street concepts apply to rural, suburban, and urban areas."

These definitions, and their application in the development of the update to the Capitola General Plan will be an important aspect of the transportation planning process and its broader integration with land use planning and polices.

Association of Monterey Bay Area Government

The Association of Monterey Bay Area Governments (AMBAG) is the federally designated Metropolitan Planning Organization (MPO) for transportation planning activities in the tricounty Monterey Bay Region. AMBAG is the lead agency responsible for developing and administering plans and programs to maintain eligibility and receive federal funds for the transportation systems in the Monterey, San Benito and Santa Cruz Counties. As the MPO, AMBAG provides the forum for cooperative decision making in the development of transportation plans, programs and recommendations.

AMBAG works with Regional Transportation Planning Agencies (San Benito Council of Governments, the Santa Cruz County Regional Transportation Commission and the Transportation Agency for Monterey County), transit providers (Monterey Salinas Transit and Santa Cruz METRO), the Monterey Bay Unified Air Pollution Control District (MBUAPCD), state and federal governments, and organizations having interest in or responsibility for transportation planning and programming. AMBAG also coordinates transportation planning and programming activities with the three counties and eighteen local jurisdictions within the tri-county Monterey Bay Region, including Capitola.

AMBAG staff, regional transportation planning agency staff, and staff from all local jurisdictions in the Monterey Bay Area have been collaborating on developing a regional growth and conservation strategy called Envisioning the Monterey Bay Area. This effort, otherwise known as the "Blueprint," focuses on improved mobility, accessibility and coordinated transportation and local land use that houses the region's future population but also preserves the most important agricultural lands and conservation areas. The Blueprint was formally adopted by the AMBAG Board in February of 2011.

Santa Cruz County Regional Transportation Commission

The Santa Cruz County Regional Transportation Commission (SCCRTC) is comprised of a commission of elected Santa Cruz County and local city elected officials that set priorities for major capital improvements for transportation infrastructure, including highways, major roads, rail and alternative transportation facilities in Santa Cruz County. They also pursue and allocate funding for all elements of the area's transportation system.

One of the primary responsibilities of the SCCRTC is to prepare a Regional Transportation Plan (RTP), a state-mandated, long range planning document to guide future transportation funding decisions. The RTP outlines transportation challenges and establishes investment priorities for all of Santa Cruz County. The plan includes a list of transit, highway, local road, bike, and pedestrian needs throughout Santa Cruz County and estimates the amount of local, state and federal dollars that may be available for these projects over the next 25 years. The plan is updated every four to five years to reflect the latest funding and project needs. The RTP was last updated in 2010. This was a minor update, with a more extensive update that incorporates SB375 greenhouse gas emissions targets anticipated for adoption in 2012.

City of Capitola

The Transportation Element of the existing Capitola General Plan (1989) is the primary transportation policy document for Capitola. Capitola utilizes the level of service (LOS) measurement for determining the level of traffic congestion. LOS is a scale that measures the amount of auto traffic that a roadway or intersection can accommodate, based on such factors as maneuverability, driver dissatisfaction, and delay. Based on these measurements, it is possible to determine the impact of auto traffic at intersections throughout Capitola.

LOS is typically represented by a letter scale that ranges from LOS A to LOS F. As shown in Table 3-3: Intersection Level of Service Definitions, LOS A represents the fastest flow of traffic and LOS F represents significantly congested conditions.

Table 3-3: Intersection Level of Service Definitions

			Control Delay Vehicle
Level of Service	Description	Signalized (sec/veh.)	Unsignalized (sec/veh.)
A	Free flow with no delays. Users are virtually unaffected by others in the traffic stream.	≤ 10	≤ 10
В	Stable traffic. Traffic flows smoothly with few delays.	> 10 - 20	> 10 - 15
С	Stable flow but the operation of individual users becomes affected by other vehicles. Modest delays.	> 20 – 35	> 15 – 25
D	Approaching unstable flow. Operation of individual users becomes significantly affected by other vehicles. Delays may be more than one cycle during peak hours.	> 35 – 55	> 25 – 35
E	Unstable flow with operating conditions at or near the capacity level. Long delays and vehicle queuing.	> 55 – 80	> 35 – 50
F	Forced or breakdown flow that causes reduced capacity. Stop and go traffic conditions. Excessive long delays and vehicle queuing.	> 80	> 50

Source: Transportation Research Board, Highway Capacity Manual 2000, National Research Council, 2000.

As defined in Policies I and 2 of the Transportation Element, LOS C is the minimum acceptable standard for circulation within Capitola with the exception of Capitola Village, where LOS D is the minimum acceptable standard.

As a result of changes in the California Environmental Quality Act and efforts to improve non-vehicular mobility (i.e. Complete Streets), the General Plan Update process will be revaluating the LOS standards and policies for Capitola.

Special Study Areas

This section provides more detailed information about the key transportation issues for the General Plan Update Special Study Areas, namely, 41st Avenue/Capitola Mall, Capitola Village, and Bay Avenue. The location of these areas is shown in Figure 3-8: Capitola Special Study Areas.

Given the precedence of the issue and recently completed studies, parking in Capitola Village has been addressed in greater detail.

41st Avenue

A major arterial in the Capitola Road network sytem is 41st Avenue. It provides access to regionally significant commercial activities and also access to the adjacent residential neighborhoods. Interscetions are closely spaced and congestion occurs particularly during the afternoon and weekend peak hours of noon to two P.M.. Lane utilization plays a critical role in movements between these intersections, particularly close to the freeway, and specific movement demand exceed the available capacity at these intersections. Bike lanes and sidelwaks are provided along 41st Avenue, but the high traffic volumes may be perceived as unsafe for biking and walking. A major transit hub is located at the Capitola Mall, which results in multiple transit acitivities and conncetions along 41st Avenue, as well as through traffic to the neighboring residential neighborhoods.

Capitola Road serves the primary link between the 41st Avenue corridor and Capitola Village. This roadway narrows to two lanes east of 45st Avenue and extends through a residential neighborhood. Further assessment of this linkage, and related traffic impacts will be given further attention as part of the General Plan Update process.

Additionally, the southern end of 41st Avenue, which is located outside of Capitola, has been gradually redeveloping as a popular destination for its mix of restaurants and retail stores. Opportunities to enhance and expand this area with the rest of 41st Avenue merits further attention in coordination with Santa Cruz County.

Given the fact that 41st Avenue and Capitola Road already operate at very congested levels, any proposals to increase densities will have to be carefully considered and evaluated to mitigate additional congestion. This will have to be addressed in coordination with Santa Cruz County, the SCCRTC, and Caltrans.

The impacts of truck traffic on non-arterial streets (e.g. 38th Avenue) and cut-through traffic will also need to be considered as part of the General Plan Update.

Source: Santa Cruz County and RBF Consulting, 2011.

CAPITOLA SPECIAL STUDY AREAS

Capitola Village

This section addresses specific transportation issues associated with Capitola Village (the Village) including parking, traffic circulation, and bicycle and pedestrian mobility.

Relevant recent studies utilized in this analysis include the following:

- City of Capitola, Parking Analysis for the Capitola Village Area, prepared by RBF Consulting, December 1, 2008.
- City of Capitola, Capitola Village Parking Structure Planning Project for the City of Capitola, prepared by Watry Design and Field Paoli, February 18, 2011.
- City of Capitola, *Parking Analysis for the Capitola Village Area*, prepared by RBF Consulting, December 1, 2008.
- City of Capitola, Report on Parking Expansion Alternatives, prepared for the Traffic and Parking Commission, April 14, 2010.

Parking Supply

Parking, or the lack thereof, is a key issue in the Village. This is largely because the Village is a desirable destination for a variety of local and regional users, particularly during peak summer, holiday, and weekend periods. Routine and predictable users include those destined for retail, restaurant, beach, and residential uses. These user groups typically compete for the very limited parking supply.

The Village Area has a total parking supply of 1,036 spaces. Of these spaces, 682 are off-street with the remaining 354 on-street (RBF Consulting, 2008). Coin-only, POM (Park-O-Meter) brand parking meters are currently utilized throughout the Village as a strategy to manage the limited parking supply. Table 3-4: Capitola Village Parking Meter Strategy provides a summary of the City's existing parking meter strategy. The location of these meter zones is shown in Figure 3-9: Capitola Village Area Parking Program.

Table 3-4: Capitola Village Parking Meter Strategy

Area (City Meter Zone ¹)	# Spaces	Time Limit	Time of Day	Days of Week	Cost per hour
Village Area (A1)	179	2-hour	8 am – 8 pm	7-days	\$1.50
Cliff Drive (A2)	46	4-hour	8 am – 8 pm	7-days	\$1.00
Pacific Cove Lot (B)	218	12-hour	no limit	7-days	\$0.50
Total	443				

Per Resolution No. 3745, City of Capitola, April 9, 2009. Source: Steve Jesberg, City of Capitola, February 7, 2011.

Source: City of Capitola and RBF Consulting, 2011.

CAPITOLA VILLAGE AREA PARKING PROGRAM

The remainder of the parking supply is managed through the use of permits (see Figure 3-9: Capitola Village Area Parking Program). Multiple strategies are currently utilized for residents, City staff, business employees, and longer-term visitors. City Council Resolution No. 3215 (April 25, 2002) established the following general parking permit requirements:

Village Preferential Permit Parking Program

- Households within the Village are entitled to preferential parking permits.
- The number of permits (not to exceed two in any case) is dependent on the number of off-street spaces, the number of registered vehicles, and occupancy type (full or part time).
- For part-time occupancy, permits are transferable between different vehicles.
- Permits are effective for a calendar year, January 1st to December 31st.
- Maximum number of Village preferential parking permits is 350.
- The cost of each permit is \$25.
- Free Pacific Cove permits are offered (maximum of 50 per year).

Village Employer/Employee Parking Permits Program.

- Village businesses may apply for up to two village employer/employee parking permits.
- The number of permits shall not exceed 35% of the total number of a business' employees up to a maximum of 50 permits.
- Permits are transferable between different vehicles.
- The cost of each permit is \$25.

Portions of the Village not specifically covered by Resolution No 3215 are also subject to permit parking limitations. More specifically, the residential area along Fanmar Way and Terrace Way are subject to permit parking 5:00 pm on Friday to 5:00 pm on Sunday all year long. In addition, residential areas outside the Village are subject to Saturday, Sunday, and Holiday limitations (11:00 am to 5:00 pm) during the summer (Memorial Day weekend through the end of September) when shuttle bus service is provided (discussed below). Finally, the Pacific Cove parking lot requires permits all year long for Village, City, and business staff/employees. For the 2011 year the City has issued a total of 40 Employer/Employee parking permits for Village businesses and has issued a total of 63 parking permits for City employees. All 103 of these cars park in the Pacific Cove parking lot.

Occupancy

As described in the *Parking Analysis for the Capitola Village Area* (RBF Consulting, 2008), during the summertime and on winter Saturdays, parking demand was observed to exceed Village capacity. More specifically, summer Saturdays exceed capacity while on Thursdays the occupancy was at 95%. Winter Saturdays exceed capacity although winter Thursdays experience 65% occupancy. In summary, summer Saturdays experience the highest occupancy, while winter weekdays experience the lowest occupancy throughout the year.

Demand

As described in the *Parking Analysis for the Capitola Village Area* (RBF Consulting 2008), peak parking demand within the Village during Summer weekends is 1,212 spaces. In actual terms, the peak parking demand of 1,212 spaces exceeds the parking supply by 176 spaces (1,036 parking space supply vs. 1,212 parking space demand). However, parking is typically deemed to be at capacity when parking spaces are occupied at 85%. If parking occupancy is higher, vehicles start circulating around the block multiple times to find available parking spaces, and traffic congestion occurs. Therefore, for optimal circulation, the existing parking demand of 1,212 spaces would be increased by 15% (or to 1,426 spaces). In this scenario, a total additional 390 spaces (1,426 spaces less supply of 1,036 spaces = 390), would be considered for optimal traffic circulation in the Village.

Future parking demand has been studied in detail by the Capitola Traffic and Parking Commission. In their report, Report on Parking Expansion (Capitola 2010), they considered a low and high range of parking demand based on future anticipated projects and public improvement initiatives in the Village. (see Appendix B).

Table 3-5: Current and Future Parking Demand in Capitola Village summarizes the parking needs, both present and future, that the City of Capitola should plan for in developing new parking in the Village. It takes into consideration potential development of a new hotel at the south end of Monterey, creation of an Esplanade Pedestrian Plan (where current parking exists), expansion of the existing Valet Parking Program, and accommodating miscellaneous future new development.

Table 3-5: Current and Future Parking Demand in Capitola Village

Demand	Low	High		
Current Shortfall	176	390		
Village Hotel	60	120		
Replace Theater Spaces	39	39		
Esplanade Pedestrian Walk/Plaza	0	100		
Valet Parking Program	0	50		
Other New Development	50	100		
Total	325	799		
Source: City of Capitola, Report on Parking Expansion Alternatives, April 14, 2010.				

Pacific Cove Parking Garage

The parking demand range identified in Table 3-5 was used as the basis for the preparation of a study by Watry Design to construct a parking garage at the Pacific Cove parking lot located behind City Hall (City of Capitola, 2011b). The Pacific Cove parking lot is currently a surface lot and is primarily used over weekends and during the summer vacation period, when demand for visitors to the Village and the beach exceeds the parking supply in the Village. The City plans to construct a parking structure at this lot that will provide additional parking spaces to meet the current shortfall and provide parking spaces for future growth in the Village. An illustration of what the garage might look like is shown in Figure Pacific Cove Parking Garage 3-10: Conceptual Illustration, below.

It is important to note that the future parking demand identified in Table 3-5 represents new parking spaces added to the existing inventory. If a new parking structure is built at the Pacific Cove parking lot site, the spaces eliminated (approximately 230 spaces) to

accommodate the structure will need to be added to the future demand projections to determine the total number of planned spaces for the parking structure.

Two design options are currently under consideration by the City. Option I is a three-level garage that would accommodate 554 total spaces, or 320 net new spaces (following replacement of the existing spaces) at a cost of \$12.8 M. Option 2 is a four-level garage that would accommodate 664 total spaces, or 430 net new stalls at a cost of \$18.8M.

Source: Warty Design, Inc. and Field Paoli, 2011.

Parking Management

Parking and land use issues in the Village are guided by the City of Capitola's Local Coastal Program, which has been closely reviewed by the Coastal Commission because the Coastal Act assigns a high priority for preserving and expanding visitor serving uses and public access. One of the Coastal Commission's major concerns, then and now, is the impact of the automobile on the Village, and the need for the City to provide additional parking, but without adversely impacting the visual and aesthetic charm of the Village.

Currently, two parking management programs are utilized in the Village Area in an effort to serve the unique user demands and to maximize the efficiency of the limited parking supply.

Village Shuttle Bus Service

As noted above, a Village shuttle bus service is provided by the City on Saturdays, Sundays, and holidays during the summer (Memorial Day weekend through mid-September). Twenty-four person shuttle buses are utilized with service hours of 10:00 am to 8:00 pm. The City is currently leasing a 75-space parking lot near the Highway I interchange with Bay Avenue (at The Crossroads shopping center) as a park-and-ride lot for the shuttle bus service. As of 2005, the annual number of shuttle bus riders was just over 13,000 persons (City of Capitola, 2006).

Surfer Board Pass

The City recently initiated a "Surfer Board Pass" program whereby surfers are offered \$50 annual parking passes that allows parking within the Village in the morning until 10:00 AM, at which time the typical morning surfing activity ends. Users of these parking passes are allowed to park in metered spaces in the Village.

Pay Stations

The Capitola City Council recently approved a phased implementation plan for new parking pay stations to replace the existing coin-only parking meters within the Village. This new equipment is anticipated to introduce desirable flexibility in how the City collects parking meter fees in both currency format (coin vs. credit card) and the ability to adjust/modify parking rates seasonally and/or by time-of-day. The implementation phases have been defined as follows:

- Phase I Esplanade portion of the Village
- Phase 2 Remainder of Village
- Phase 3 Cliff Drive
- Phase 4 Pacific Cove Parking Lot

The Phase I equipment installation and operational implementation is anticipated to be completed prior to Memorial Day weekend 2011. The new equipment will be tested over the summer months and a course of action for implementing Phases 2 through 4 will be determined based on the results of Phase I.

Intelligent Parking Management System

Parking management techniques have been found within the transportation industry to be very successful in alleviating high parking demand. Parking management techniques applicable to the Village include parking fees that vary according to the time of day and level of demand, valet parking using off-site lots, and variable message signs that indicate when parking is full and direct the visitor to an alternative parking location. The goal of parking management, especially in areas

where parking is at or over capacity, is to maximize parking availability by guiding the driver to vacant parking spaces through an intelligent real-time parking management system. Such a system decreases vehicles circulating multiple times around the block looking for parking, while optimizing fee collection. Approaches to solving parking issues in the Village could include implementing a system that would track parking occupancy, and optimize parking fee collections. The benefits of such a system include:

- Facility cost savings and additional revenue generation for the city
- Flexibility in parking provisions and future land planning projects
- Decreased demand of new land for parking
- Promote the use of alternative transportation, like the beach shuttle
- Reduced vehicular travel and emissions

Bay Avenue

Bay Avenue provides access for Highway I to commercial land uses immediately south of Highway I. Bay Avenue also is the main arterial connecting City of Capitola with the town of Soquel. It also provides access to the residential neighborhoods south of the freeway and to Capitola Village. It is a four lane roadway just south of the freeway and changes at Hill Street to a three lane roadway up to Capitola Avenue and then continues southeast as a two lane roadway to Monterey Avenue.

The intersection of Bay Avenue and Capitola Avenue is on a skew angle, which increases crosswalk distances for pedestrians, crossing distances for bicycles and vehicles. It also

results in high perception-reaction time from drivers, which adds to the delay at the intersection. Long queues are evident at this intersection during busy peak hours, including when New Brighten Middle school opens in the morning and lets out in the early afternoons. The City has identified the construction of a roundabout as a possible alternative at this intersection. This improvement will help alleviate congestion and improve safety. Figures 3-11 and 3-12 conceptually illustrate both a single- and dual roundabout that could be accommodate at the intersection with minimal acquisition of new right-of-way. Funding sources have yet to identified so the project remains conceptual and under consideration.

Other transportation issues for the Bay Avenue Special Study Area that should be addressed in the General Plan Update include the following:

- Pedestrian and bike mobility along the corridor and under Highway I to Porter Street, particularly with respect to students going to/from Soquel Elementary, Soquel High School and New Brighten Middle School. Improved bicycle mobility along this corridor could also help reduce the automotive traffic generated by parents who currently drive their children to school.
- Careful consideration of additional traffic volumes along Bay Avenue generated from any land use changes and close coordination with Caltrans regarding the Highway I/BayAvenue/Porter Street interchange and the proposed Highway I High Occupancy Vehicle (HOV) Lane Project.
- Pedestrian and handicapped mobility for seniors living and shopping in the area and participating in activities at the Mid-County Senior Center. Opportunities to create a gateway entry to Capitola along Bay Avenue.
- Options to improve vehicular and non-vehicular connectivity between Bay Avenue and the Village (e.g. signage to direct people to the Pacific Cove parking lot, Beach Shuttle parking lot, etc.).
- Opportunities to improve the pedestrian environment including landscaping, seating, lighting, etc. as well as additional traffic calming measures.
- Options to improve and enhance the connection to the Soquel Creek and the pedestrian/bike bridge that leads to Rispin Mansion and Wharf Road (signage, lighting, designated and stripped pathways, etc.)

Source: RBF Consulting, 2011.

FIGURE 3-11

Source: RBF Consulting, 2011.

FIGURE 3-12

References

- City of Capitola, *Parking Analysis for the Capitola Village Area*, prepared by RBF Consulting, December 1, 2008.
- City of Capitola, Bicycle Transportation Plan, adopted February 10, 2011.
- City of Capitola, Capitola Village Parking Structure Planning Project for the City of Capitola, prepared by Watry Design and Field Paoli, February 18, 2011.
- City of Capitola, Report on Parking Expansion Alternatives, prepared by the Traffic and Parking Commission, April 14, 2010.
- Ron Skelton, Walkability as an Indicator of the Quality of Life in Capitola, 2011.
- Santa Cruz County Regional Transportation Commission, *Improving the Safety and Accessibility of Sidewalks in Santa Cruz County*, July 2010

.

Appendix A

Capitola Redevelopment Agency
Capital Improvement Program, Fiscal Year 2010-11

City of Capitola Capitola Redevelopment Agency Capital Improvement Program Fiscal Year 2010-11

Project List - Master

Project Number	Project Category	Location	Project	Year Scheduled	Engineer's Estimate	Total Available Funds		Unfunded
Number	Calegory	Location	Project	Scrieduled	Estillate	ruius		Unitariaea
C3	Creek	Soquel	Stockon Bridge Enhancement	unprogrammed	42,900	-	\$	42,900
C5	Creek	Soquel	Flume Repair/Replacement	Unprogrammed	500,000	-	\$	500,000
C6		Beach	West Jetty Refirbishment	Unprogrammed	440,000	-	\$	440,000
			, 	Total	\$ 982,900	\$ -	\$	982,900
F4	Facility	Beulah	Site Development for City use	Unprogrammed	101,800	-	\$	101,800
F6	Facility	Pacific Cove MHP	New Water Line and Slurry Seal	Unprogrammed	228,000	-	\$	228,000
F9	Facility	Corp Yard	Second Story Addition - Remodel	Unprogrammed	480,000	-	\$	480,000
F10	Facility	City Hall	Remodel Council Chambers	unprogrammed	83,200	-	\$	83,200
F11	Facility	City Hall	Install Emergency Generator	Unprogrammed	92,800	-	\$	92,800
F13	Facility	City Hall	Remodel City Hall including Offices	Unprogrammed	2,720,000	-	\$	2,720,000
F14	Facility	Police Department	Remodel Police Department	Unprogrammed	1,632,000	-	\$	1,632,000
F15	Facility	Community Center	Remodel Community Center	Unprogrammed	1,728,000	-	\$	1,728,000
				Total	\$ 7,065,800	\$ -	\$	7,065,800
P15	Parks	Esplanade	Bluff Erosion Control	2010-11	90,900	90,900	\$	_
P6	Parks	Jade	Soccer and Baseball Field Improvements	Unprogrammed	24,100	-	\$	24,100
P7	Parks	Cortez	Landscaping and Pathways	Unprogrammed	45,400	_	\$	45,400
P9	Parks	Monterey	Field Irrigation and Drainage Improvements	Unprogrammed	48,000	_	\$	48,000
P10	Parks	Cortez	New Play Equipment in Swing Areas	Unprogrammed	96,500	_	\$	96,500
P11	Parks	Soquel Creek	Repair Retaining Wall	Unprogrammed	49,500	_	\$	49,500
P12	Parks	Jade & Cortez	Develop Picnic and BBQ area @ Jade	Unprogrammed	37,600	_	\$	37,600
P13	Parks	TBD	Skate Park Development	Unprogrammed	485,000	_	\$	485,000
P14	Parks	TBD	Dog Park Development	Unprogrammed	29,700	_	\$	29,700
P16	Parks	Jade	Reconstruct Tennis Courts		100,600	_	\$	100,600
FIU	Faiks	Jaue	Reconstruct Termis Courts	Unprogrammed Total	\$ 1,007,300	\$ 90,900	\$	916,400
S12	Streets	Capitola Rd/42nd	Pedestrian Improvements	2010-11	484,769	484,769	\$	_
S48	Streets	38th Avenue	Overlay from Brommer St to Capitola Rd	2010-11	590,000	590,000	\$	_
S39	Streets	Various		2010-11	70,000	70,000	\$	_
	Streets	Various	Slurry Seals - 2009	2010-11	70,000	70,000	\$	_
S44 S55		41st Rehab Phaae 2	Slurry Seals -2010	2010-11	427,000	52,000	\$	375,000
	Streets		Gross Road to Clares Street		89,900	89,900	\$	373,000
S43	Streets	Cherry Avenue	PMP -2010	2010-11	70,000	70,000	\$	-
S45	Streets	Various	Slurry Seals - 2011	2011-12	502,000	,		322,000
S46	Streets	Park, Reposa, Cliff, El Sa		2011-12	•	180,000	\$	322,000
S35	Streets	Bay Avenue Corridor	Utility Undergrounding	2012-13 2012-13	300,000	300,000	\$ \$	-
S49	Streets	Various	Slurry Seals - 2012		70,000	70,000		260,000
S50	Streets	TBD	PMP - 2012	2012-13	540,000	180,000	\$	360,000
S51	Streets	Various	Slurry Seal 2013	2013-14	70,000	70,000	\$	200 000
S52	Streets	TBD	PMP - 2013	2013-14	540,000	180,000	\$	360,000
S56	Streets	PMP - 2014	TBD	2014-15	502,000	180,000	\$	322,000
S57	Streets	Slurry - 2014	TBD	2014-15	70,000	70,000	\$	-
S1	Streets	Pacific Cove Parking	Lighting & Sidewalk Improvements	Unprogrammed	95,700	-	\$	95,700
S2	Streets	Village	Phase II - Multi-modal improvements	Unprogrammed	1,226,800	=	\$	1,226,800
S8	Streets	Cliff Dr.	Seawall (Corps)	Unprogrammed	1,150,000	-	\$	1,150,000
S9	Streets	Hooper's Beach	Stairway Repairs	Unprogrammed	32,400	-	\$	32,400
S10	Streets	41st/Cap Rd	New Signals	Unprogrammed	270,000	-	\$	270,000
S20	Streets	Pacific Cove Parking	2nd level parking lot addition	Unprogrammed	12,825,000	-		12,825,000
S21	Streets	Village	Phase III - Multi-modal improvements	Unprogrammed	1,151,600	-	\$	1,151,600
S22	Streets	Stockton Ave Bridge	Hazard Assessment	Unprogrammed	50,000	-	\$	50,000
S27	Streets	Village	Phase IV - Multi-modal improvements	Unprogrammed	858,000	-	\$	858,000
S28	Streets	41st	Widen Highway 1 Overpass to 6 lanes	Unprogrammed	5,775,000	-	\$	5,775,000
S40	Streets	Grand Ave	Drainage Improvements	Unprogrammed	859,000	42,000	\$	817,000
S42	Streets	Wharf Road	Retaining wall extension	Unprogrammed	412,500	-	\$	412,500
S53	Streets	Hill Street	Ped. Impts from Cap Ave to Rosedale	Unprogrammed	120,000	-	\$	120,000
S54	Streets	Reposa Avenue	Traffic Calming	Unprogrammed	40,000	-	\$	40,000
				Total	\$29,261,669	\$ 2,698,669	\$	26,563,000

^{* \$375,000} of ARRA funds not budgeted at this time and may become available in 2010-11

City of Capitola Capitola Redevelopment Agency Capital Improvement Program Fiscal Year 2010-11

Project List - Master

Project	Project			Year		Engineer's	Total Available	
Number	•	Location	Project	Scheduled		Estimate	Funds	Unfunded
W2	Wharf		Utility Improvements (Water, Sewer, Electrical)	Unprogrammed		88,100	-	\$ 88,100
W3	Wharf		Restaurant & Restroom Remodeling	Unprogrammed		300,000	-	\$ 300,000
				Total	\$	388,100	\$ =	\$ 388,100
N5	NTAC	Clares & Wharf	Clares & Wharf Traffic Calming	2010-11		400,000	400,000	\$
N3	NTAC	Bay & Cap Ave	Bay Ave/Cap Ave Intersection Improvements	Unprogrammed		564,400		\$ 564,400
N4	NTAC	Bay & Cap Ave	Bay Ave/Monterey Ave Intersection Improvements	Unprogrammed		297,000	_	\$ 297,000
N6	NTAC	Park Ave	Park Ave sidewalks to Cabrillo	unprogrammed		402,500	_	\$ 402.500
N7	NTAC	Monterey Ave	Relocate Stop Signs on Monterey Ave	unprogrammed		8,700		\$ 8.700
N8	NTAC	Depot Hill	Ingress/Egress improvements to Depot Hill	unprogrammed		148,500		\$ 148,500
N9	NTAC	Stockton Ave	Raised crosswalks at Stockton & Esplanade	Unprogrammed		150,000		\$ 150,000
N10	NTAC	Park Ave	Slow Street Design on Park Ave	unprogrammed		123,900		\$ 123,900
N12	NTAC	Monterey Ave	Slow street design on lower Monterey Ave	unprogrammed		115,500		\$ 115,500
N13	NTAC	Various	Slow street design on Escalona, Fanmar, Cliff Ave, & El Salto	unprogrammed		90,900		\$ 90,900
N14	NTAC	Escalona	Small traffic circle at Escalona and Oakland	unprogrammed		12,400		\$ 12,400
N15	NTAC	Bay	Traffic Calming on Bay Ave	unprogrammed		206,400		\$ 206,400
N16	NTAC	Beulah	One way traffic on Beulah (west to east)	unprogrammed		20,600		\$ 20,600
N17	NTAC	Monterey and Hill	Sidewalks on Monterey and Hill	unprogrammed		50,300		\$ 50,300
N18	NTAC	47th Ave	Traffic Calmning on 47th Ave	Unprogrammed		80,000		\$ 80,000
N19	NTAC	42nd Ave	Bulb-outs on 42nd at DMV	unprogrammed		33,000		\$ 33,000
N20	NTAC	Cliff Dr.	Bulb-outs on Cliff Drive below Prospect	unprogrammed		49,500		\$ 49,500
N21	NTAC	49th Ave	Bikeway striping on 49th Ave	unprogrammed		4,100		\$ 4,100
N22	NTAC	Various	Establish Truck Routes through City	unprogrammed		20,600		\$ 20,600
N24	NTAC	Wharf	Replace rolled curb on Wharf Road	Unprogrammed		74,300		\$ 74,300
N26	NTAC	49th Ave	Chicanes on 49th Ave	unprogrammed		45,400		\$ 45,400
N27	NTAC	Various	Signage depicting Neighborhoods	unprogrammed		20,600		\$ 20,600
N28	NTAC	42nd Ave	Slow Traffic Design on 42nd	unprogrammed		53,600		\$ 53,600
N11	NTAC	Fanmar	One way Traffic on Fanmar (east to west)	unprogrammed		33,000	Ф400 000	\$ 33,000
				Total	•	\$3,005,200	\$400,000	\$2,605,200

Grand Totals \$41,710,969 \$3,189,569 \$38,521,400

Appendix B

City of Capitola Report on Parking Expansion (April 2010)

City of Capitola Traffic and Parking Commission

Report on Parking Expansion Alternatives

Approved by the Traffic and Parking Commission on April 14, 2010

Executive Summary

Over the past eight months the Traffic and Parking Commission for the City of Capitola has determined that the expansion of public parking inventory serving Capitola Village should be one of the City's highest priorities. The Commission has reviewed all the recent reports and studies completed by the City, and using the data contained in these reports made a determination on a range of spaces needed and a location for them.

Using the 2008 Parking Needs Analysis by RBF Consulting, which quantified the existing needs as a range between 176 – 390 parking spaces, the Commission identified and quantified future needs that could be foreseen now. These future needs included spaces for a Village Hotel and other new development, possibly creating an Esplanade pedestrian promenade, and providing parking for a valet parking program. The results of this work indicate that the City should aim to create 325 new parking spaces at a minimum, with a maximum need of 799.

The Commission believes any new parking should be developed in such a way as to reduce vehicles traveling through the Village. The new parking should intercept vehicles coming from Bay Avenue and Park Avenue, and be easy to find for the vehicles entering from Stockton Avenue. The parking should be within walking distance of the Village, but also provide some form of transport between the parking location and the Village. Given these parameters, the Commission further determined that the City owned Pacific Cove property, which currently consists of a public parking lot and the Pacific Cove Mobile Home Park, is the best location for parking expansion.

The Commission realizes that development of new parking spaces cannot be done in isolation. In addition to providing more parking for the Village, the Commission supports the development of programs that will improve parking systems and provide alternatives to the search for parking.

In addition, the Commission has reviewed the Village Parking Permit Program and has recommended minor changes to this program that will be sent to the Council separately. The Commission will also be undertaking a review of the Neighborhood Parking Permit Program.

It is important to note the Commission has focused on parking and not yet on circulation. The Commission realizes that traffic and circulation need to be analyzed as they exist in the Village now, and how they would be impacted by the expansion of spaces in Pacific Cove.

Background

The Traffic and Parking Commission was formed by the Capitola City Council by Resolution No. 3740 which was adopted on February 26, 2009. The Commission's charge is to develop short, medium, and long term plans for City Council consideration that address traffic and parking demands in the City by considering citywide traffic and parking improvements developed in various studies and reports provided to the City Council. Once these plans are in place, the Commission shall act as an advisor to the City Council on implementation of the plans and other duties requested by the Council.

The Commission is comprised of eleven community members representing differing interests in the City and the Village area. Currently the Commission is comprised of the following.

Ed Bottorff, Central Village Resident
Ron Burke, Planning Commission Representative
Carin Hanna, Village Business Owner
Linda Hanson, Appointee of Council Member Norton
Margaret Kinstler, Central Village Resident
Vicki Muse, Appointee of Council Member Begun
Anne Nicol, Appointee of Council Member Nicol
Molly Ording, Appointee of Council Member Storey
Jeanne Roddy, Pacific Cove Mobile Home Park Resident
Nels Westman, Appointee of Council Member Graves
Gary Wetsel, Village Business Owner

The Commission held its first meeting on June 10, 2009. The Commission normally meets on a monthly basis, but has been meeting twice a month in January, February, and March of 2010 in order to complete this report.

On September 9, 2010 the Commission adopted the following vision statement as a guide in their analysis of traffic and parking as it relates to Capitola Village.

A Traffic and Parking Commission vision is to address parking needs in the Central Village without increasing public parking in the Central Village; and any parking removed from the Central Village must be replaced in kind outside the Central Village.

On November 12, 2009 the Commission chair, Gary Wetsel, presented an oral report to the City Council that included the initial recommendations for parking expansion (see Attachment 1 for slide presentation). Following this report, the Commissioners continued to pursue more detailed information on these recommendations. The Commission therefore established the four subcommittees to track and gather more detailed information in key areas in support of the Commission's initial recommendations.

Established Sub-Committees

- 1. Parking Structure to identify key elements, potential timetable and costs of a new multi-level parking structure at the Pacific Cove Parking Lot site.
- 2. Lower Pacific Cove Mobile Home Park Surface Parking to identify key issues and estimate of cost of creating a surface level parking lot on the western portion of the mobile home park.
- 3. Hotel to track and study key issues relating to traffic and parking relative to the proposed Village Hotel.
- 4. Transportation Links between Pacific Cove and the Central Village to look for innovative ways to move people that would both be an attraction and encourage people to park at Pacific Cove rather than the Village.

Many of the details contained in the report were the results of the work of these sub-committees.

Introduction

Although there are times when parking is readily available in the Village, including the Pacific Cove Parking Lot, the existing parking supply does not meet the demands during peak periods. This shortage in parking is frustrating for residents, merchants and visitors alike. The beauty of Capitola Village makes it a primary destination for many. Neighboring communities such as Santa Cruz, Los Gatos, Monterey, Pacific Grove, and Carmel either provide free parking or readily accessible parking to their commercial areas. The City of Capitola must strive to do its best to improve the quality of the lives of residents, merchants, and visitors and make planning decisions based on peak demands.

To make Capitola Village sustainable it must be able to handle the influx of seasonal visitors who are currently the life's blood for merchants, while also encouraging locals to visit during the slower periods, providing a stable foundation. To meet both these demands it is necessary to provide parking in the Village that result in the following:

- Improving availability of parking for Village residents without off-street parking.
- Improving availability of parking for customers of Village merchants.
- Improving availability of parking for Village employees.
- Improving availability of parking for beach/Village visitors.
- Lessening impact of Village parking shortage on adjacent neighborhoods.

Recent trends show that more and more people are competing for fewer and fewer parking spaces. Development of parcels, expansion of permit areas, increased permit holders, widening of sidewalks, expansion of loading zones, etc. all conspire to slowly but surely make fewer and fewer spaces available to meet a growing demand. In addition to this shrinking parking supply, stringent Coastal Commission restrictions insure that no well-planned major revitalizing commercial development (such as a hotel) is possible in the Village without a major new source of parking in close proximity to the Village.

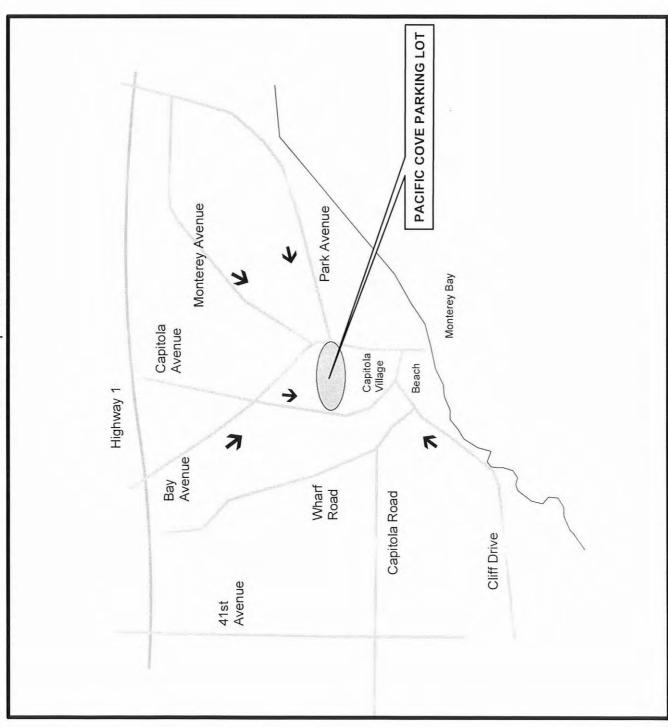
In the early 1980's the City purchased Pacific Cove Mobile Home Park and installed the first parking meters in the City for the express purpose of providing additional parking for Capitola Village. While Phase One added 234 new parking spaces in the upper section, Phase Two (the lower section) has remained in residential use to this day. The Commission recommends the construction of new parking spaces in a portion of the existing Pacific Cove Mobile Home Park as potentially the fastest and least expensive source of additional parking. The Commission understands the potential for legal and other logistical challenges to this partial solution; however this cannot be a potential solution until the City begins the necessary process.

It is critical to realize though that developing parking in the lower portion of the Pacific Cove Mobile Home Park will not alone address all the current and future parking needs. Thus it is clear that any expansion parking capacity at Pacific Cove must be further accommodated on the upper level where the existing Pacific Cove Parking Lot is located. This expansion can only be done with a multi-level parking structure. Although both of these parking expansion projects are located on the Pacific Cove property they must be treated as separate projects so that an unforeseen delay in one project does not delay the other.

The Commission has considered other sites for the development of new parking but considers the Pacific Cove property as the only suitable site because it is within a reasonable walking distance of the Village and all roads to the village lead to Pacific Cove (see map on next page). The Commission's search for parking has considered "in-fill" parking by trying to capture every nook and cranny to convert to a public parking space. This "Parkitola" approach simply does not generate sufficient spaces to address the identified long term needs and also has the negative effect of encouraging parkers to spread out into the neighborhoods in search of parking spaces.

Consultants have determined, using Local Coastal Plan criteria, that a deficit of 176 spaces already exists based on existing land usesⁱ. This deficit is the absolute minimum need to meet the shortage and nothing short of a parking structure can provide this number, let alone any demand from new development such as a new hotel or closing a portion of the Esplanade to cars.

The construction of a parking structure in Pacific Cove and the development of a Village hotel or any other development are vitally linked because it is highly unlikely that any significant redevelopment project could or should provide the required parking on-site. Smart public/private partnerships could result in the timely construction of the parking structure while providing significantly improved utilization of the available on-site parking and a lower cost to the City resulting from sharing of construction costs.


The Commission also believes that a public "people mover" between Pacific Cove and the Village is key to the success. While we are not yet prepared to make a formal recommendation, we believe such a service is readily available and could make Capitola Village "unique" and serve as a very practical addition to the utilization of the parking structure.

Further, while the Commission has not yet formally addressed traffic or congestion in the Village, we believe that parking expansion in the Pacific Cove property as proposed will not only reduce congestion in the Central Village but, because of the its central location, permit a more efficient traffic flow.

The time has come to identify and start work on implementing the right solution. The Commission has reviewed all available studies and information and believes the recommendations in this report focus on the most practical means of addressing this critical need today as well as for the future.

Roads Leading to Capitola Village

All roads point to Pacific Cove

Key Elements for developing new parking for the Village

- ☐ Intercepts as many roads as possible headed to the Village ☐ Easy access for vehicl coming from the
- Easy access for vehicles coming from the VillageEasy pedestrian access

from parking to Village

Parking Needs Analysis

One of the first decision points for the Commission was a determination that if any new parking is built to serve the Village area, it should address not only the existing needs but also the identifiable future needs. The 2008 Parking Analysisⁱⁱ studied the existing parking inventory and the demand for spaces based on the existing number of residential units, commercial space, and demand for parking resulting from visitors to Capitola Beach. This study established a minimum need for 176 parking spaces and also a theoretical maximum 390 based on current needs. The 390 spaces represent a design target of 15% over demand to provide openings in the parking system so that vehicles do not have to circle around looking for a parking space.

After reviewing this report the Commission agreed that these numbers were the best numbers available and used them in identifying the existing parking needs. Next the Commission set out to identify future needs that should be included in any new parking expansion. The Commission considered several issues before settling on the following list:

Village Hotel - A new village hotel will not be able to provide all the required parking on site. Based on the preliminary plans being presented by Barry Swenson Builder, a hotel on the theater site will require 100 - 120 spaces. In addition the Central Village will lose 39 public paid parking spaces currently available on the theater lot. While the amount of onsite parking that can be provided by the hotel is variable, it was the consensus of the Commission that offsite parking of some level would be required. The Commission decided that a minimum of 60 spaces should be planned in any new parking lot development for a new hotel with a maximum of 120 spaces. The final number will depend on discussions between a hotel developer and the city.

Esplanade Pedestrian Plaza – Over the years the concept of removing all or a portion of parking from the Esplanade to create a pedestrian plaza has been broadly discussed. While the Commission as a body has not taken a position on this matter, it did agree that additional parking would be mandatory for any new development for this concept. A range of 0-100 replacement spaces was identified for this need; the zero representing no project and 100 spaces representing full closure of the Esplanade from Stockton Avenue to Monterey Avenue. Partial closure of the Esplanade from San Jose to Monterey would require the replacement of 60 spaces.

Designated Valet Parking Spaces – In 2009 the City approved the development of a valet parking program for the village that entailed utilizing two spaces in the Village as a drop off zone, with the cars being shuttled to a remote parking lot outside the Central Village. The California Coastal Commission, whose approval was required for the project, added language that forbade the use of public parking for the remote lot, effectively eliminating using space in the existing Pacific Cove Parking Lotⁱⁱⁱ. The Commission has added a maximum of 50 spaces to be designated for a valet program.

New Development and Redevelopment – A primary need for new parking for the Village is to enable development and more specifically redevelopment. Current projects have been stymied by the inability to meet parking requirements. The Commission recommends adding 50 -100 spaces for this purpose. It is understood that any development project utilizing these spaces would need to pay for the spaces via an in-lieu parking fee.

The following chart summarizes the parking needs, both present and future, that the City of Capitola should plan for in developing new parking. This range is developed with the idea that updated information will be available to refine this number in the future, while also providing target numbers for use in preliminary planning of a parking structure.

Demand	Low	High
Current Shortfall	176	390
Village Hotel	60	120
Replace Theater Spaces	39	39
Esplanade Pedestrian Walk	0	100
Valet Parking Program	0	50
Other New Development	50	100
Total Long Term Parking Needs	325	799

It is important to remember that these numbers represent new parking spaces added to existing inventory. If a new parking structure is built at the Pacific Cove Parking Lot site, the spaces eliminated to accommodate the structure will need to be added to these numbers to determine the total number planned for the parking structure.

Short Term Program and Policy Changes to Assist Parking Solutions

Besides adding to the parking inventory the Commission has also reviewed and is recommending several programs that will help manage and enhance parking in the Central Village. Many of these programs aren't new but have never been implemented, or have only been implemented on a trial basis.

Public Valet Parking – As discussed above, a valet parking program would provide an opportunity to add parking outside the Central Village that services visitors to the Village. Although current efforts in attracting a vendor for this operation have not been successful, the Commission recommends that staff continue to work on ways to implement this program.

Pay Stations – The Commission realizes the revenue generated from parking meters in the Village is critical, and that the stand alone parking meters, that accept only coins, have real functional limits that have been reached. At the current meter rate of \$1.50 per hour, twelve quarters are needed to pay for the 2 hours of parking currently permitted. Pay stations, where one station services up to 15 spaces and accepts payment via credit cards in

addition to coins, would greatly enhance the parking experience. Besides the payment benefits, utilizing pay stations could ultimately lead to advanced parking management systems where vacant spaces are identified and sign boards are utilized to direct drivers to open parking spaces, deterring people from circling around the Village hunting for a space. There are two basic types of pay stations, Pay and Display where a ticket is printed and displayed on the dashboard, and Pay by Space where each parking stall is numbered and paid for at the pay station. The Commission is recommending Pay by Space stations as these types of systems allow a user to pay or add time to their "meter" at any station in the system without returning to their vehicle. Another key component of installing pay stations would be the ability to easily enact variable rate structures where the rate could vary by season, day of the week, or even hour of the day, with all the information contained at each station.

Year Round or Seasonal Shuttle Program – The Commission supports staff's continuing exploration of a city-wide shuttle to encourage residents, employees and visitors to stay out of their cars and still be able to get around town.

Medium Term Program and Policy Changes to Assist Parking Solutions

In-lieu Parking Fees for Commercial Development – The current parking shortfall inside the Central Village does not allow new development and redevelopment. An in-lieu parking program would allow these projects to meet their parking requirements by paying for spaces in an approved parking structure that reflect the actual construction costs. By eliminating parking in the Village, vehicle trips and related congestion would also be reduced.

Zoning Changes for the CV – The 2008 Parking Analysis includes an analysis of Capitola's parking requirements in the zoning code. This analysis indicates that the existing codes are too strict and do not take into account shared use of existing on-street parking. The Commission supports a review of these requirements and adoption of new codes similar to the ITE standards referenced in the report however until additional parking is developed changes to the Zoning Code would have no impact.

Long Range Parking Space Inventory Development

If additional parking is to be developed the key question is where should it go? The Commission has discussed this issue and has agreed on the following parameters:

 New parking areas should intercept cars before entering the Village from Park Avenue, Capitola Avenue, and Bay Avenue. Cars entering from Stockton Avenue should be directed to use Capitola Avenue to access the parking lot to discourage circling the Village looking for a space.

- 2. The new parking areas must have a combination of convenient pedestrian access to the Central Village, and alternate transportation such as a shuttle bus or tramway.
- The new parking areas should not clutter the entrances to the Village by filling up existing
 open spaces and landscaped areas such as the UPRR corridors along Cliff Drive and at
 Monterey Avenue and Park Avenue.
- 4. The new parking areas must benefit to visitors, residents, business owners and employees.

Given these parameters the Commission recommends the additional parking be located at the Pacific Cove property owned by the City. The existing uses on the property include the Pacific Cove Parking Lot and the Pacific Cove Mobile Home Park. Further development of parking on this site can be accomplished two ways, a multi-level structure over the parking lot and surface parking in the lower mobile home park.

The following chart shows the estimated number of parking spaces that could be provided on the Pacific Cove property:

Pacific Cove Parking Expansion	New Parking	Total Parking
Existing Pacific Cove parking lot		234
Surface on a portion of the lower Pacific Cove Mobile	113	113
Pacific Cove Parking Structure over existing parking	325	325
Total Proposed	438	672

Two of the Commission's sub-committees have delved into details of these issues and their reports are contained in Attachments 2 and 3.

Fiscal Analysis

Parking Structure

Size – This analysis reflects a 500 space parking structure (175 existing spaces to be replaced and 325 new spaces).

Development Costs - Based on per space cost ranges contained in recent reports to the City from various consultants (high \$21,000; low \$17,000), we have used an average cost estimate of \$19,000 per space which results in a cost of \$9.5 Million.

Potential Funding for Construction:

Source	Amount
Hotel Contribution (See explanation below)	\$ 2,900,000
CDBG Grants	\$ 2,000,000
EDA Grants	\$ 1,000,000
Bond Proceeds	\$ 3,600,000
TOTAL	\$ 9,500,000

On-going Annual Costs:

<u>Item</u>	Estimated Cost			
Debt Service on \$3.6 million bond*	\$208,000			
Operating and Maintenance	\$200,000			
Total	\$408,000			

^{*}assumes \$3.6 million at 4% over 30 years

Revenue Streams - Sources for revenue streams to pay the annual expense are as follows:

Source	Amount
Dedicated Parking Fund	\$ 50,000
Adding parking meters to 43 existing 2-hour unmetered parking spaces in	\$ 92,000
Village	
Enhanced revenue from expanded Pacific Cove parking (@ \$1/hr rate)	\$163,000
Dedication of 50% of TOT revenues from new Village hotel	\$120,000
TOTAL	\$424,000

Village Hotel Contribution - The methodology of calculating the Village Hotel's portion of the proposed parking structure was based on the net price per new parking space. While the gross cost per space for a parking structure is \$19,000, the net cost must factor out the existing spaces that will be reconstructed. This methodology recognizes the City's contribution of existing spaces and land for the project.

Space determination		
Gross spaces to be built	500	
Existing spaces lost due structure construction ^v	175	
Net new spaces	325	
	\$ 29,000*	

^{*\$9,500,000} divided by 325 net spaces

Hotel needs and costs	
Minimum spaces needed	60
Replace theater lot public spaces	39
Total spaces needed by hotel	99
Hotel contribution	\$2,900,000*

^{*99} spaces @ \$29,000

Surface Parking in a portion of the Pacific Cove Mobile Home Park

Size – Based on the 2005 Parking Garage and Housing Feasibility Study^{vi}, this site could provide 113 spaces

Development Costs – The sub-committee estimated the minimum costs at \$1.35 million (see attachment 3)

On-going Annual Costs:

Item	Estimated Cost		
I-Bank loan or other financing*	\$ 78,000		
Operating and maintenance	\$ 20,000		
Total	\$ 98,000		

^{*}assumes \$1.35 million at 4% for 30 years

Potential Funding for Relocation and Construction:

Source	Amount		
Dedicated Parking Fund	\$ 50,000		
Enhanced revenue from additional 113 spaces (@ \$1/hr rate)	\$ 56,500		
OTAL \$ 106,500			

Other Revenue Streams - Other potential sources of annual revenue that could be utilized for either parking enhancement project:

Source	Amount	
Cell phone tower on structure	\$ 25,000	
Increase TOT rate from 10% to 12%	\$150,000	
Install pay stations in Village with dual rate structure*	\$250,000	
Village Business District	TBD	
Sales Tax Increase Initiative	TBD	

^{*}A significant portion of this will be offset by the cost to purchase/lease and operate the pay station system. This revenue figure is VERY preliminary.

Specific Recommendations for Increasing Parking Supply for the Village

- 1. Develop surface parking in the Lower Pacific Cove Mobile Home Park As part of a long term solution to the shortage of parking spaces in the Central Village, the Lower Portion of the Pacific Cove Mobile Home Park should be converted to surface parking to create the maximum number of parking spaces. These new parking spaces alone will not meet the minimum need of 325 spaces, but it will provide some relief while also providing parking when a parking structure is being built on the Pacific Cove Parking Lot site. If the parking structure is properly sized, this surface parking could potentially be turned to another use upon completion of the structure.
- 2. <u>Construct a multi-level parking structure on the Pacific Cove Parking Lot site</u> –Pursue the construction of a multi-level parking structure on the Pacific Cove Parking Lot site. The Commission's analysis has determined that a parking structure must be included in any solution to meet the minimum demand for additional parking.

Continued Traffic and Parking Commission Roles

The Traffic and Parking Commission feels that this report meets the direction of the City Council to provide guidance on parking in the Village and encourages the City Council to take immediate action to begin implementation of these long-term plans. The Commission realizes that implementing these recommendations entails an enormous amount of work and the Commission is willing and able to assist as necessary. The Commission will work with City staff on these and other matters, but it is ultimately up to the City Council and City staff to provide the direction, leadership and allocation of resources necessary to move forward with these projects.

The Commission will continue with its sub-committee investigations and will next begin a review of the neighborhood parking permit program and traffic circulation and congestion issues.

Endnotes

¹ Parking Garage and Housing Feasibility Study, RBF Consulting, June 2006

ii See above

iii California Coastal Commission, Local Coastal Program Amendment No. 1-07, September 16, 2009

iv See i above

V See i above

vi See i above

APPENDIX D2: LEVEL OF SERVICE (LOS) WORKSHEETS

.....

Ext AM Tue Oct 22, 2013 09:48:22 Page 1-1

Scenario Report

Scenario: Ext AM

Command:

Volume:

Ext AM

Geometry:

Impact Fee:

Trip Generation:

Trip Distribution:

Paths:

Routes:

Configuration:

Default Command

Ext AM

Default Geometry

Default Impact Fee

Default Trip Generation

Default Trip Distribution

Default Path

Default Route

Default Configuration

Impact Analysis Report Level Of Service

Intersection	Base Del/ V/	Future Del/ V/	Change in		
# 1 41st Ave / SR-1 NB Ramps	LOS Veh C B 17.6 0.510	LOS Veh C B 17.6 0.510	+ 0.000 D/V		
# 2 41st Ave / SR-1 SB Ramps	B 13.0 0.614	B 13.0 0.614	+ 0.000 D/V		
# 3 41st Ave / Gross Rd	C 21.1 0.531	C 21.1 0.531	+ 0.000 D/V		
# 4 41st Ave / Clares St	C 25.2 0.470	C 25.2 0.470	+ 0.000 D/V		
# 5 41st Ave / Capitola Rd	C 20.3 0.386	C 20.3 0.386	+ 0.000 D/V		
# 6 41st Ave / Brommer St / Jade S	B 18.9 0.488	B 18.9 0.488	+ 0.000 D/V		
# 7 Clares St / Capitola Rd	B 15.0 0.401	B 15.0 0.401	+ 0.000 D/V		
# 8 Wharf Rd / Clares St	B 11.4 0.530	B 11.4 0.530	+ 0.000 V/C		
# 9 49th Ave / Capitola Rd	B 11.0 0.435	B 11.0 0.435	+ 0.000 V/C		
# 10 Wharf Rd / Cliff Dr / Stockton	C 17.3 0.742	C 17.3 0.742	+ 0.000 V/C		
# 11 Porter St / SR-1 NB Ramps	C 20.5 0.737	C 20.5 0.737	+ 0.000 D/V		
# 12 Bay Ave / SR-1 SB Ramps	C 20.1 0.656	C 20.1 0.656	+ 0.000 D/V		
# 13 Bay Ave / Hill St	B 14.8 0.523	B 14.8 0.523	+ 0.000 V/C		
# 14 Capitola Ave / Bay Ave	B 12.6 0.447	B 12.6 0.447	+ 0.000 V/C		
# 15 Monterey Ave / Bay Ave	A 9.4 0.370	A 9.4 0.370	+ 0.000 V/C		
# 16 Monterey Ave / Park Ave	B 12.1 0.550	в 12.1 0.550	+ 0.000 V/C		
# 17 Capitola Ave / Stockton Ave	C 19.6 0.817	C 19.6 0.817	+ 0.000 V/C		
# 18 Monterey Ave / Capitola Ave	в 11.7 0.530	в 11.7 0.530	+ 0.000 V/C		
# 19 Park Ave / SR-1 NB Ramps	в 16.5 0.548	в 16.5 0.548	+ 0.000 D/V		
# 20 Park Ave / SR-1 SB Ramps	в 20.0 0.592	в 20.0 0.592	+ 0.000 D/V		
# 21 Park Ave / Kennedy Dr	E 46.1 1.060	E 46.1 1.060	+ 0.000 V/C		

Tue Oct 22, 2013 09:48:24 Ext. AM ______ ______ Level Of Service Computation Report 2000 HCM Operations Method (Base Volume Alternative) ****************** Intersection #1 41st Ave / SR-1 NB Ramps ************************* Cycle (sec): 90
Loss Time (sec): 9
Optimal Cycle: 34 Critical Vol./Cap.(X): 0.510 Average Delay (sec/veh): Level Of Service: 17.6 *************************** Street Name: 41st Ave SR-1 NB Ramps
Approach: North Bound South Bound East Bound West Bound
Movement: L - T - R L - T - R L - T - R -----||-----||------| Volume Module: Base Vol: 0 553 280 0 523 136 0 0 712 3 472 Initial Bse: 0 553 280 0 523 136 0 0 712 3 472 PHF Volume: 0 570 0 0 539 0 0 0 0 734 3 487 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 Reduced Vol: 0 570 0 0 539 0 0 0 0 734 3 487 FinalVolume: 0 570 0 0 539 0 0 0 734 3 487 -----||-----||-----| Saturation Flow Module: Final Sat.: 0 3610 1900 0 3610 0 0 0 3443 15 1615 -----|-----||-------| Capacity Analysis Module: Vol/Sat: 0.00 0.16 0.00 0.00 0.15 0.00 0.00 0.00 0.00 0.21 0.21 0.30 Crit Moves: **** **** Volume/Cap: 0.00 0.51 0.00 0.00 0.48 0.00 0.00 0.00 0.00 0.36 0.36 0.51 Uniform Del: 0.0 25.5 0.0 0.0 25.2 0.0 0.0 0.0 0.0 9.6 9.6 10.8 Note: Queue reported is the number of cars per lane.

______ Level Of Service Computation Report 2000 HCM Operations Method (Base Volume Alternative) ****************** Intersection #2 41st Ave / SR-1 SB Ramps ************************* Cycle (sec): 90 Loss Time (sec): 9 Optimal Cycle: 60 Critical Vol./Cap.(X): 0.614 Average Delay (sec/veh): Level Of Service: 13.0 **************************** Street Name: 41st Ave SR-1 SB Ramps Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R -----||-----||------| Volume Module: Base Vol: 0 647 601 0 1042 200 197 1 457 0 0 Initial Bse: 0 647 601 0 1042 200 197 1 457 0 0 PHF Volume: 0 696 646 0 1120 0 212 1 491 0 0 0 Reduct Vol: 0 696 646 0 1120 0 212 1 491 0 0 0 Reduced Vol: 0 696 646 0 1120 0 212 1 491 0 0 0 FinalVolume: 0 696 646 0 1120 0 212 1 491 0 0 -----||-----||------| Saturation Flow Module: -----|----||------| Capacity Analysis Module: Vol/Sat: 0.00 0.19 0.40 0.00 0.22 0.00 0.13 0.15 0.15 0.00 0.00 0.00 **** **** Crit Moves:

Green/Cycle: 0.00 0.65 0.65 0.00 0.65 0.00 0.25 0.25 0.25 0.00 0.00 0.00 Volume/Cap: 0.00 0.30 0.61 0.00 0.33 0.00 0.53 0.61 0.61 0.00 0.00 0.00 Uniform Del: 0.0 6.8 9.1 0.0 7.0 0.0 29.3 30.0 30.0 0.0 0.0 0.0

Traffix 8.0.0715 (c) 2008 Dowling Assoc. Licensed to RBF, MONTEREY BAY

Tue Oct 22, 2013 09:48:24 Ext. AM ______ ______ Level Of Service Computation Report 2000 HCM Operations Method (Base Volume Alternative) ****************** Intersection #3 41st Ave / Gross Rd ************************* Critical Vol./Cap.(X): 0.531 Cycle (sec): 120 Loss Time (sec): 16
Optimal Cycle: 90 Average Delay (sec/veh): Level Of Service: 21.1 ************************ Street Name: 41st Ave Gross Rd

Approach: North Bound South Bound East Bound West Bound

Movement: L - T - R L - T - R L - T - R -----||-----||------| Volume Module: Base Vol: 66 960 17 75 1095 337 248 7 75 12 5 34 Initial Bse: 66 960 17 75 1095 337 248 7 75 12 5 34 PHF Volume: 73 1067 19 83 1217 374 276 8 83 13 6 38 0 0 0 0 0 0 0 0 Reduct Vol: 0 0 Reduced Vol: 73 1067 19 83 1217 374 276 8 83 13 6 38 -----|----||------| Saturation Flow Module: Final Sat.: 1805 5081 90 1805 3827 1178 3526 100 1615 1296 540 1615 -----|----||------| Capacity Analysis Module: Vol/Sat: 0.04 0.21 0.21 0.05 0.32 0.32 0.08 0.08 0.05 0.01 0.01 0.02 **** Crit Moves: **** Green/Cycle: 0.08 0.55 0.55 0.12 0.60 0.60 0.15 0.15 0.15 0.04 0.04 0.04 Volume/Cap: 0.53 0.38 0.38 0.38 0.53 0.53 0.53 0.53 0.35 0.23 0.23 0.53 Uniform Del: 53.3 15.1 15.1 48.5 14.2 14.2 47.3 47.3 46.0 55.4 55.4 56.1

Traffix 8.0.0715 (c) 2008 Dowling Assoc. Licensed to RBF, MONTEREY BAY

______ ______ Level Of Service Computation Report 2000 HCM Operations Method (Base Volume Alternative) ****************** Intersection #4 41st Ave / Clares St ******************** Critical Vol./Cap.(X): 0.470 Cycle (sec): 100 Loss Time (sec): 16 Optimal Cycle: 47 Average Delay (sec/veh): Level Of Service: **************************** Street Name: 41st Ave Clares St Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R -----||-----||------| Volume Module: Base Vol: 30 662 25 124 669 272 201 46 20 22 75 172 Initial Bse: 30 662 25 124 669 272 201 46 20 22 75 172 PHF Volume: 36 798 30 149 806 328 242 55 24 27 90 207 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 Reduced Vol: 36 798 30 149 806 328 242 55 24 27 90 207 FinalVolume: 36 798 30 149 806 328 242 55 24 27 90 207 -----||-----||-----| Saturation Flow Module: Final Sat.: 1805 4973 188 1805 5187 1615 4413 617 268 426 1453 1615 -----|-----||-------| Capacity Analysis Module: Vol/Sat: 0.02 0.16 0.16 0.08 0.16 0.20 0.05 0.09 0.09 0.06 0.06 0.13 Crit Moves: **** **** **** Green/Cycle: 0.05 0.34 0.34 0.18 0.47 0.47 0.19 0.19 0.19 0.13 0.13 0.31 Volume/Cap: 0.43 0.47 0.47 0.47 0.33 0.43 0.29 0.47 0.47 0.47 0.47 0.42 Uniform Del: 46.4 25.9 25.9 37.0 16.6 17.6 34.6 36.0 36.0 40.2 40.2 27.5

Note: Queue reported is the number of cars per lane. ******************* Intersection #5 41st Ave / Capitola Rd

Loss Time (se	ec):	-	L2			Averag	e Dela	ay (se	ec/veh)	:	20	0.3
Optimal Cycle			33			Level						C
*****	* * * * *	****			****	*****	****	****	*****	****	* * * * * *	*****
Street Name:			41st	Ave					Capito	la Rd		
Approach:	No:	rth Bo	ound	Soi	ath Bo	ound	Εa	ast Bo	ound	We	est Bo	
Movement:	L	– T	- R	L -	- T	- R	L ·	- T	- R	L ·		
Control: Rights:	P:	rotect	ted	Pi	cotect	ted	Sp.	lit Pl	nase	Sp.	lit Ph	nase
Rights:		Inclu	ıde		Incl	ude		Incl	ude			
Min. Green:			0							0		0
Y+R:									4.0			
Lanes:	1 '	0 2	0 1	2 () 2	0 1	1 () 1	1 0	1 :		1 0
Tolumo Module												
Volume Module		407	55	100	420	69	1 2 2	120	2.4	102	227	75
Base Vol:					432			139				
Growth Adj: Initial Bse:			1.00 55	123	1.00	1.00 69	133	1.00	1.00 34	102	1.00	1.00 75
User Adj:		1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00
PHF Adj:					0.98	0.98		0.98	0.98		0.98	0.98
PHF Volume:			56	126	441	70	136	142	35	104		77
			0	120		0	130			104		0
Reduct Vol: Reduced Vol:	40	415	56	126		70	136		0 35	104		77
PCE Adi:			1.00		1.00	1.00		1.00	1.00		1.00	1.00
MLF Adj:			1.00		1.00	1.00		1.00			1.00	1.00
FinalVolume:			56		441	70		142		104		77
												, ,
Saturation F				1			1			1		I
Sat/Lane:		1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Adjustment:					0.95	0.85		0.92	0.92		0.91	0.91
Lanes:					2.00			1.61			1.50	0.50
Final Sat.:			1615		3610				688		2606	861
Capacity Ana				1		ı	1		1	1		
Vol/Sat:			0.03	0.04	0.12	0.04	0.08	0.05	0.05	0.06	0.09	0.09
Crit Moves:		****		****			****					****
Green/Cycle:	0.07	0.30	0.30	0.09	0.32	0.32	0.19	0.19	0.19	0.23	0.23	0.23
Volume/Cap:			0.12		0.38	0.14		0.26	0.26		0.39	0.39
Uniform Del:			16.6		17.1	15.7		22.2	22.2		21.1	21.1
IncremntDel:	1.9	0.2	0.1	0.8	0.2	0.1	0.7	0.2	0.2	0.1	0.2	0.2
InitQueuDel:	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0
Delay Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		1.00	1.00
Delay/Veh:	30.8	18.3	16.7	28.5	17.3	15.8	23.5	22.4	22.4	20.6	21.4	21.4
User DelAdj:			1.00		1.00	1.00	1.00	1.00	1.00		1.00	1.00
AdjDel/Veh:			16.7		17.3	15.8		22.4			21.4	21.4
LOS by Move:	С	В	В	С	В	В	С	С	С	С	С	С
HCM2kAvgQ:	1	3	1	1	3	1	2	2	2	2	3	3

Note: Queue reported is the number of cars per lane.

Cycle (sec): 60 Average Delay (sec/veh):
Level Of Service: Loss Time (sec): 12 Optimal Cycle: 37 **************************** Street Name:
41st Ave
Brommer St / Jade St
Approach:
North Bound
South Bound
East Bound
West Bound
Movement:
L - T - R L - T - R -----||-----||------| Volume Module: Base Vol: 30 408 40 57 357 57 111 89 40 51 72 64 Initial Bse: 30 408 40 57 357 57 111 89 40 51 72 64 PHF Volume: 35 480 47 67 420 67 131 105 47 60 85 75 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 Reduced Vol: 35 480 47 67 420 67 131 105 47 60 85 75 FinalVolume: 35 480 47 67 420 67 131 105 47 60 85 75 -----||-----||------| Saturation Flow Module: Final Sat.: 1805 3245 318 1805 3048 487 1026 823 1615 772 1090 1615 -----|-----||-------| Capacity Analysis Module: Vol/Sat: 0.02 0.15 0.15 0.04 0.14 0.14 0.13 0.13 0.03 0.08 0.08 0.05 Crit Moves: **** **** **** Green/Cycle: 0.05 0.30 0.30 0.08 0.33 0.33 0.26 0.26 0.26 0.16 0.16 0.16 Volume/Cap: 0.41 0.49 0.49 0.49 0.41 0.41 0.49 0.49 0.11 0.49 0.49 0.29 Uniform Del: 27.8 17.1 17.1 26.6 15.5 15.5 18.8 18.8 16.9 23.0 23.0 22.2

Note: Queue reported is the number of cars per lane.

______ ______ Level Of Service Computation Report 2000 HCM Operations Method (Base Volume Alternative) ****************** Intersection #7 Clares St / Capitola Rd ******************** Cycle (sec): 60
Loss Time (sec): 12
Optimal Cycle: 34 Critical Vol./Cap.(X): 0.401 Average Delay (sec/veh): Level Of Service: **************************** Street Name: Clares St Capitola Rd
Approach: North Bound South Bound East Bound West Bound
Movement: L - T - R L - T - R L - T - R -----||-----||------| Volume Module: Base Vol: 0 0 0 37 0 167 172 321 0 0 323 51 Initial Bse: 0 0 0 37 0 167 172 321 0 0 323 51 PHF Volume: 0 0 0 39 0 176 181 338 0 0 340 54 FinalVolume: 0 0 0 39 0 176 181 338 0 0 340 54 -----|----||------| Saturation Flow Module: -----|-----||-------| Capacity Analysis Module: Crit Moves: **** Green/Cycle: 0.00 0.00 0.00 0.27 0.00 0.27 0.25 0.53 0.00 0.00 0.28 0.28 Volume/Cap: 0.00 0.00 0.00 0.08 0.00 0.40 0.40 0.18 0.00 0.00 0.40 0.40 Uniform Del: 0.0 0.0 0.0 16.3 0.0 17.9 18.7 7.4 0.0 0.0 17.6 17.6 ************************* Note: Queue reported is the number of cars per lane.

______ Level Of Service Computation Report 2000 HCM 4-Way Stop Method (Base Volume Alternative) ****************** Intersection #8 Wharf Rd / Clares St ******************** Cycle (sec): 100 Critical Vol./Cap.(X): Loss Time (sec): 0 Average Delay (sec/veh): Optimal Cycle: 0 Level Of Service: Critical Vol./Cap.(X): 0.530 **************************** Street Name: Wharf Rd Clares St Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R -----||-----||------| -----| Volume Module: Base Vol: 45 241 0 0 238 152 106 0 37 0 0 Initial Bse: 45 241 0 0 238 152 106 0 37 0 0 FinalVolume: 48 259 0 0 256 163 114 0 40 0 0 Saturation Flow Module: -----||-----||-----| Capacity Analysis Module: Vol/Sat: 0.42 0.42 xxxx xxxx 0.53 0.53 0.25 xxxx 0.25 xxxx xxxx xxxx Crit Moves: **** **** Delay/Veh: 11.1 11.1 0.0 0.0 12.1 12.1 10.0 0.0 10.0 0.0 0.0 0.0 AdjDel/Veh: 11.1 11.1 0.0 0.0 12.1 12.1 10.0 0.0 10.0 0.0 0.0 0.0 LOS by Move: B B * * B B B * * 12.1 ApproachDel: 11.1 10.0 XXXXXX Delay Adj: ApprAdjDel: 1.00 1.00 1.00 XXXXX 12.1 10.0 ApprAdjDel: 11.1 LOS by Appr: B xxxxxx В В AllWayAvgO: 0.7 0.7 0.7 1.0 1.0 1.0 0.3 0.3 0.0 0.0 *************************

Note: Queue reported is the number of cars per lane. *************************

______ Level Of Service Computation Report 2000 HCM 4-Way Stop Method (Base Volume Alternative) ****************** Intersection #9 49th Ave / Capitola Rd ************************* Cycle (sec): 100 Critical Vol./Cap.(X): Loss Time (sec): 0 Average Delay (sec/veh): Optimal Cycle: 0 Level Of Service: Critical Vol./Cap.(X): 0.435 11.0 **************************** Street Name: 49th Ave Capitola Rd Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R -----||-----||------| -----| Volume Module: Base Vol: 12 49 21 44 55 156 146 102 11 20 242 Initial Bse: 12 49 21 44 55 156 146 102 11 20 242 12 PHF Volume: 12 51 22 45 57 161 151 105 11 21 249 12 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reduced Vol: 12 51 22 45 57 161 151 105 11 21 249 12 FinalVolume: 12 51 22 45 57 161 151 105 11 21 249 12 Saturation Flow Module: -----||-----||-----| Capacity Analysis Module: Vol/Sat: 0.16 0.16 0.16 0.19 0.19 0.26 0.27 0.19 0.19 0.04 0.43 0.43 Crit Moves: **** **** **** Delay/Veh: 10.3 10.3 10.3 10.4 10.4 9.8 11.3 9.8 9.8 9.2 12.6 12.6 AdjDel/Veh: 10.3 10.3 10.3 10.4 10.4 9.8 11.3 9.8 9.8 9.2 12.6 12.6 LOS by Move: B B B B B B A B A B B ApproachDel: 10.3 10.0 10.6 12.4 Delay Adj: ApprAdjDel: 1.00 1.00 1.00 1.00 10.0 ApprAdjDel: 10.3 LOS by Appr: B 10.6 12.4 В В AllWayAvqO: 0.2 0.2 0.2 0.2 0.3 0.3 0.2 0.2 0.7

Note: Queue reported is the number of cars per lane.

______ Level Of Service Computation Report 2000 HCM 4-Way Stop Method (Base Volume Alternative) ****************** Intersection #10 Wharf Rd / Cliff Dr / Stockton Ave ******************** Cycle (sec): 100 Critical Vol./Cap.(X): 0.742 Loss Time (sec): Optimal Cycle: 0 Average Delay (sec/veh): Level Of Service: 17.3 **************************** Street Name: Wharf Rd Cliff Dr / Stockton Ave Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R -----||-----||------| -----| Volume Module: Initial Bse: 2 5 5 160 3 14 16 283 0 8 387 303 PHF Volume: 2 6 6 190 4 17 19 337 0 10 461 0 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 Reduced Vol: 2 6 6 190 4 17 19 337 0 10 461 0 FinalVolume: 2 6 6 190 4 17 19 337 0 10 461 0 Saturation Flow Module: -----||-----||-----| Capacity Analysis Module: Vol/Sat: 0.03 0.03 0.03 0.39 0.39 0.39 0.55 0.55 xxxx 0.74 0.74 0.00 Crit Moves: **** Delay/Veh: 9.4 9.4 9.4 12.5 12.5 12.5 14.3 14.3 0.0 22.0 22.0 0.0 AdjDel/Veh: 9.4 9.4 9.4 12.5 12.5 12.5 14.3 14.3 0.0 22.0 22.0 0.0 LOS by Move: A A A B B B B B * C C ApproachDel: 9.4 12.5 14.3 22.0 Delay Adj: 1.00 1.00 1.00 1.00 12.5 ApprAdjDel: 9.4 LOS by Appr: A 14.3 22.0 LOS by Appr: A B B C AllWayAvgQ: 0.0 0.0 0.0 0.5 0.5 0.5 1.1 1.1 1.1 2.4 2.4 *************************** Note: Queue reported is the number of cars per lane.

______ ______

Level Of Service Computation Report 2000 HCM Operations Method (Base Volume Alternative) ******************

Intersection #11 Porter St / SR-1 NB Ramps ************************* Cycle (sec): 85
Loss Time (sec): 9
Optimal Cycle: 54 Critical Vol./Cap.(X): 0.737 20.5

Average Delay (sec/veh): Level Of Service: ****************************

Street Name: Porter St SR-1 NB Ramps
Approach: North Bound South Bound East Bound West Bound
Movement: L - T - R L - T - R L - T - R -----||-----||------| Volume Module: Base Vol: 374 652 0 0 455 477 0 0 67 15 169 Initial Bse: 374 652 0 0 455 477 0 0 67 15 169 PHF Volume: 407 709 0 0 495 518 0 0 0 73 16 184 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 Reduced Vol: 407 709 0 0 495 518 0 0 0 73 16 184 FinalVolume: 407 709 0 0 495 518 0 0 0 73 16 184 -----||-----||------| Saturation Flow Module:

Final Sat.: 1805 3610 0 0 1666 1666 0 0 0 1615 134 1504 -----|-----||-------| Capacity Analysis Module:

Crit Moves: **** * * * * Green/Cycle: 0.31 0.73 0.00 0.00 0.42 0.42 0.00 0.00 0.00 0.17 0.17 0.17 Volume/Cap: 0.74 0.27 0.00 0.00 0.70 0.74 0.00 0.00 0.00 0.27 0.74 0.74 Uniform Del: 26.4 3.9 0.0 0.0 20.2 20.6 0.0 0.0 31.0 33.7 33.7

Note: Queue reported is the number of cars per lane. ******************* Intersection #12 Bay Ave / SR-1 SB Ramps

______ ______

Level Of Service Computation Report 2000 HCM Operations Method (Base Volume Alternative) ************************

******************** Critical Vol./Cap.(X): 0.656
Average Delay (sec/veh): 20.1
Level Of Service: Cycle (sec): 75
Loss Time (sec): 9
Optimal Cycle: 44

Optimal Cycle	_					Level				++++		C
Street Name:												
Approach:	No	rth Bo	ound	Sou	ıth Bo	ound	Ea	ast Bo	ound	We	est Bo	ound
Movement:											- T	- R
Control:	Pi	rotect	ed	Pı	cotect	ced	·	?ermit	ted	·	?ermit	tted
Rights:		Inclu	ıde		Incl	ıde		Incl	ıde		Incl	ude
Min. Green:	0	0	0	0	0	0	0	0	0	0	0	0
Y+R:	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Lanes:						0 0			0 1			0 0
Volume Module												
			135		295		332			0	0	
Growth Adj:			1.00		1.00			1.00	1.00		1.00	1.00
Initial Bse:		704	135	232	295	0	332	2	254	0	0	0
User Adj:			1.00		1.00	1.00		1.00	1.00		1.00	1.00
	0.95		0.95		0.95	0.95		0.95	0.95		0.95	0.95
PHF Volume:			142	244	311	0	349	2	267	0	0	0
Reduct Vol: Reduced Vol:	0	0	0	0		0	0	0	0	0	0	0
			142	244		0	349	2		0	0	0
PCE Adj:	1.00		1.00		1.00	1.00		1.00			1.00	1.00
MLF Adj:			1.00		1.00	1.00		1.00			1.00	1.00
FinalVolume:			142		311	0	349	2		0	0	0
Saturation Fl												
Sat/Lane:				1900	1900	1900	1900	1900	1900	1900	1900	1900
Adjustment:			0.93		0.95		0.86		0.86		1.00	1.00
Lanes:			0.32		2.00			0.01			0.00	0.00
Final Sat.:			567	1805		0		11		0	0	0
Capacity Anal	I			1		ı	1		'	1		
Vol/Sat:			0.25	0.14	0.09	0.00	0.14	0.19	0.11	0.00	0.00	0.00
Crit Moves:				****				***				
Green/Cycle:	0.00	0.38	0.38	0.21	0.59	0.00	0.29	0.29	0.29	0.00	0.00	0.00
Volume/Cap:			0.66	0.66	0.15	0.00	0.47	0.66	0.39	0.00	0.00	0.00
Uniform Del:	0.0	19.1	19.1	27.3	6.9	0.0	21.8	23.3	21.3	0.0	0.0	0.0
<pre>IncremntDel:</pre>	0.0	1.2	1.2	4.2	0.0	0.0	0.3	1.7	0.2	0.0	0.0	0.0
InitQueuDel:			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Delay Adj:	0.00	1.00	1.00	1.00	1.00	0.00	1.00	1.00	1.00	0.00	0.00	0.00
Delay/Veh:			20.3	31.5	7.0	0.0	22.1	25.0	21.4	0.0	0.0	0.0
User DelAdj:			1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
AdjDel/Veh:			20.3	31.5	7.0	0.0		25.0	21.4	0.0	0.0	0.0
LOS by Move:	A	С	С	С	A				C	A	A	A
HCM2kAvgQ:		10	10	5	2	0			4	0	0	0

Note: Queue reported is the number of cars per lane.

```
______
                     Level Of Service Computation Report
             2000 HCM 4-Way Stop Method (Base Volume Alternative)
******************
Intersection #13 Bay Ave / Hill St
*************************
Cycle (sec): 100 Critical Vol./Cap.(X):
Loss Time (sec): 0 Average Delay (sec/veh):
Optimal Cycle: 0 Level Of Service:
                                        Critical Vol./Cap.(X): 0.523
Cycle (sec): 100
************************
Street Name: Bay Ave Hill St

Approach: North Bound South Bound East Bound West Bound

Movement: L - T - R L - T - R L - T - R
-----||-----||------|

        Control:
        Stop Sign
        Stop Sign
        Stop Sign
        Stop Sign

        Rights:
        Include
        Include
        Include
        Include

        Min. Green:
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0

        Lanes:
        1
        0
        1
        0
        1
        0
        0
        1
        0
        0
        1
        0
        0
        1
        0
        0
        1
        0
        0
        1
        0
        0
        1
        0
        0
        1
        0
        0
        1
        0
        0
        1
        0
        0
        1
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
-----|
Volume Module:
Initial Bse: 68 483 7 59 374 36 66 8 33 7 30
                                                                           138
PHF Volume: 74 525 8 64 407 39 72 9 36 8 33 150 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 Reduced Vol: 74 525 8 64 407 39 72 9 36 8 33 150
FinalVolume: 74 525 8 64 407 39 72 9 36 8 33 150
Saturation Flow Module:
-----||-----||-----|
Capacity Analysis Module:
Vol/Sat: 0.16 0.52 0.52 0.14 0.45 0.44 0.19 0.19 0.08 0.38 0.38 0.38
Crit Moves: ****
                              ****
Delay/Veh: 11.5 16.6 16.6 11.5 15.1 14.9 12.6 12.6 10.2 13.6 13.6 13.6
AdjDel/Veh: 11.5 16.6 16.6 11.5 15.1 14.9 12.6 12.6 10.2 13.6 13.6 13.6
LOS by Move: B C C B C B B B B B B
ApproachDel: 16.0
                                14.6
                                                 11.8
                                                                    13.6
Delay Adj:
ApprAdjDel:
                 1.00
                                                                     1.00
                                  1.00
                                                    1.00
                               14.6
ApprAdjDel: 16.0
LOS by Appr: C
                                                   11.8
                                                                     13.6
LOS by Appr: C B B B B AllWayAvgQ: 0.2 1.0 1.0 0.2 0.7 0.7 0.2 0.2 0.1 0.5 0.5
***************************
```

Note: Queue reported is the number of cars per lane.

______ ______ Level Of Service Computation Report 2000 HCM 4-Way Stop Method (Base Volume Alternative) ****************** Intersection #14 Capitola Ave / Bay Ave ******************** Cycle (sec): 100 Loss Time (sec): 0 Optimal Cycle: 0 Critical Vol./Cap.(X): 0.447 Average Delay (sec/veh): Level Of Service: **************************** Street Name: Capitola Ave Bay Ave Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R -----||-----||------| Control: Stop Sign Stop Sign Stop Sign Stop Sign Rights: Include Include Include Include Min. Green: 0 Lanes: 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 0 -----| Volume Module: Base Vol: 111 95 6 28 60 25 48 175 136 38 195 Initial Bse: 111 95 6 28 60 25 48 175 136 38 195 30 PHF Volume: 122 104 7 31 66 27 53 192 149 42 214 33 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 Reduced Vol: 122 104 7 31 66 27 53 192 149 42 214 33 FinalVolume: 122 104 7 31 66 27 53 192 149 42 214 33 Saturation Flow Module: -----||-----||------| Capacity Analysis Module: Vol/Sat: 0.45 0.45 0.01 0.25 0.25 0.25 0.44 0.44 0.23 0.08 0.44 0.44 Crit Moves: **** **** Delay/Veh: 14.4 14.4 8.6 11.7 11.7 11.7 13.3 13.3 9.6 10.0 13.2 13.2 AdjDel/Veh: 14.4 14.4 8.6 11.7 11.7 11.7 13.3 13.3 9.6 10.0 13.2 13.2 LOS by Move: B B A B B B B B B B B ApproachDel: 14.2 11.7 12.7 11.9 Delay Adj: ApprAdjDel: 1.00 1.00 1.00 1.00 11.7 ApprAdjDel: 14.2 LOS by Appr: B 11.9 12.7 В В AllWayAvgO: 0.7 0.7 0.0 0.3 0.3 0.7 0.7 0.3 0.1 0.7 *************************** Note: Queue reported is the number of cars per lane.

______ Level Of Service Computation Report 2000 HCM 4-Way Stop Method (Base Volume Alternative) ****************** Intersection #15 Monterey Ave / Bay Ave ******************** Cycle (sec): 100 Loss Time (sec): 0 Optimal Cycle: 0 Critical Vol./Cap.(X): 0.370 Average Delay (sec/veh): Level Of Service: **************************** Street Name: Monterey Ave Bay Ave Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R -----||-----||------| -----||-----||------| Volume Module: Base Vol: 136 50 0 0 28 105 110 0 156 0 0 Initial Bse: 136 50 0 0 28 105 110 0 156 0 0 PHF Volume: 148 54 0 0 30 114 120 0 170 0 0 0 Reduct Vol: 0 0 0 0 30 114 120 0 170 0 0 0 Reduced Vol: 148 54 0 0 30 114 120 0 170 0 0 0 FinalVolume: 148 54 0 0 30 114 120 0 170 0 0 Saturation Flow Module: -----||-----||-----| Capacity Analysis Module: Vol/Sat: 0.29 0.29 xxxx xxxx 0.18 0.18 0.37 xxxx 0.37 xxxx xxxx xxxx Crit Moves: **** Delay/Veh: 9.7 9.7 0.0 0.0 8.2 8.2 9.8 0.0 9.8 0.0 0.0 0.0 AdjDel/Veh: 9.7 9.7 0.0 0.0 8.2 8.2 9.8 0.0 9.8 0.0 0.0 0.0 A * * LOS by Move: A A * * A A A * 8.2 ApproachDel: 9.7 9.8 XXXXXX Delay Adj: 1.00 1.00 1.00 XXXXX 8.2 ApprAdjDel: 9.7 LOS by Appr: A 9.8 xxxxxx ***************************

Note: Queue reported is the number of cars per lane. *****************

______ ______ Level Of Service Computation Report 2000 HCM 4-Way Stop Method (Base Volume Alternative) ****************** Intersection #16 Monterey Ave / Park Ave ******************** Cycle (sec): 100 Critical Vol./Cap.(X): 0.550 Loss Time (sec): 0 Optimal Cycle: 0 Average Delay (sec/veh): Level Of Service: **************************** Street Name: Monterey Ave Park Ave Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R -----||-----||------| -----| Volume Module: Base Vol: 2 130 208 96 83 3 5 3 15 278 3 42 Initial Bse: 2 130 208 96 83 3 5 3 15 278 3 42 PHF Volume: 2 141 226 104 90 3 5 3 16 302 3 46 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 Reduced Vol: 2 141 226 104 90 3 5 3 16 302 3 46 FinalVolume: 2 141 226 104 90 3 5 3 16 302 3 46 Saturation Flow Module: -----||-----||-----| Capacity Analysis Module: Vol/Sat: 0.24 0.24 0.34 0.35 0.35 0.01 0.04 0.04 0.04 0.55 0.55 0.55 Crit Moves: **** Delay/Veh: 10.3 10.3 10.2 12.1 12.1 8.0 8.8 8.8 14.4 14.4 14.4 AdjDel/Veh: 10.3 10.3 10.2 12.1 12.1 8.0 8.8 8.8 14.4 14.4 14.4 LOS by Move: B B B B B A A A B B B ApproachDel: 10.3 8.8 12.0 14.4 Delay Adj: ApprAdjDel: 1.00 1.00 1.00 1.00 12.0 ApprAdjDel: 10.3 LOS by Appr: B 8.8 14.4 LOS by Appr: B B B A B A B AllWayAvgQ: 0.3 0.3 0.5 0.5 0.5 0.0 0.0 0.0 0.0 1.1 1.1 ***************************

Note: Queue reported is the number of cars per lane.

______ ______ Level Of Service Computation Report 2000 HCM 4-Way Stop Method (Base Volume Alternative) ****************** Intersection #17 Capitola Ave / Stockton Ave ************************* Cycle (sec): 100 Critical Vol./Cap.(X): 0.817 Average Delay (sec/veh): Level Of Service: Loss Time (sec): 0 Optimal Cycle: 0 **************************** Street Name: Capitola Ave Stockton Ave Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R -----||-----||------| -----||-----||------| Volume Module: Initial Bse: 172 0 329 4 26 11 0 15 226 396 60 0 PHF Volume: 183 0 350 4 28 12 0 16 240 421 64 0 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 Reduced Vol: 183 0 350 4 28 12 0 16 240 421 64 0 FinalVolume: 183 0 350 4 28 12 0 16 240 421 64 0 Saturation Flow Module: -----||-----||-----| Capacity Analysis Module: Vol/Sat: 0.37 xxxx 0.59 0.10 0.10 0.10 xxxx 0.43 0.43 0.82 0.82 xxxx Crit Moves: **** Delay/Veh: 13.7 0.0 16.2 10.5 10.5 10.5 0.0 12.5 12.5 29.0 29.0 0.0 AdjDel/Veh: 13.7 0.0 16.2 10.5 10.5 10.5 0.0 12.5 12.5 29.0 29.0 0.0 LOS by Move: B * C B B B * B D D * * 12.5 ApproachDel: 15.4 10.5 29.0 Delay Adj: ApprAdjDel: 1.00 1.00 1.00 1.00 10.5 ApprAdjDel: 15.4 LOS by Appr: C 12.5 29.0 В В D AllWayAvgO: 0.5 0.0 1.2 0.1 0.1 0.6 0.6 0.6 3.3 3.3 ***************************

Note: Queue reported is the number of cars per lane. *****************

______ Level Of Service Computation Report 2000 HCM 4-Way Stop Method (Base Volume Alternative) ****************** Intersection #18 Monterey Ave / Capitola Ave ************************* Cycle (sec): 100 Critical Vol./Cap.(X): 0.530 Average Delay (sec/veh): Level Of Service: Loss Time (sec): 0 Optimal Cycle: 0 ************************** Street Name: Monterey Ave Capitola Ave Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R -----||-----||------| -----||-----||------| Volume Module: Base Vol: 60 80 0 0 396 280 0 0 0 0 Initial Bse: 60 80 0 0 0 396 280 0 0 0 0 FinalVolume: 65 86 0 0 0 426 301 0 0 0 0 Saturation Flow Module: -----||-----||-----| Capacity Analysis Module: Vol/Sat: 0.23 0.23 xxxx xxxx xxxx 0.53 0.47 xxxx xxxx xxxx xxxx xxxx Crit Moves: **** Delay/Veh: 9.8 9.8 0.0 0.0 0.0 11.8 12.6 0.0 0.0 0.0 0.0 0.0 AdjDel/Veh: 9.8 9.8 0.0 0.0 0.0 11.8 12.6 0.0 0.0 0.0 0.0 0.0 * * * LOS by Move: A A * * * B B * 11.8 ApproachDel: 9.8 12.6 XXXXXX Delay Adj: 1.00 1.00 1.00 XXXXX 11.8 ApprAdjDel: 9.8 LOS by Appr: A 12.6 xxxxxx В В AllWayAvgO: 0.3 0.3 0.3 1.0 1.0 0.8 0.8 0.8 0.0 0.0 *************************** Note: Queue reported is the number of cars per lane.

______ ______

Level Of Service Computation Report 2000 HCM Operations Method (Base Volume Alternative) ************************

Intersection #19 Park Ave / SR-1 NB Ramps

******************** Cycle (sec): 80
Loss Time (sec): 9
Optimal Cycle: 36 Critical Vol./Cap.(X): 0.548
Average Delay (sec/veh): 16.5 Critical Vol./Cap.(X): В

Level Of Service:

*********			50 *****	****	****	******				*****	*****	D *****		

Approach:	No	rth Bo	raind Sund	SOI	ı+h Bo	nund	F:	act Ro	onng on Inc	West Bound L - T - R				
Movement:	T	. сп в - т	_ D	т	ден D(- Т	- P	Т	. БС D(- P	T	- T	- P		
	I		l	1		l	1			1				
Control:	ı Pı	rotect	ted I	l Pi	rotect	ted I	I	Permit	ted	I	Permit	ted		
Control: Rights:		Incl	ıde		Incl	ıde		Incl	ıde		Inclu	ıde		
Min. Green:	0	0	0	0	0	0	0	0	0	0	0	0		
77 - D •	4 0	4 0	4 0	4 0			4.0	4.0	4.0	4.0	4.0	4.0		
Lanes:	1 (2	0 0	0 (0 1			0 0					
Volume Module			_	_			_	_	_					
Base Vol:				0				0						
Growth Adj:					1.00	1.00		1.00			1.00	1.00		
Initial Bse:			0		339	290	0	0		143	23	175		
User Adj:					1.00	1.00		1.00			1.00	1.00		
PHF Adj:					0.81	0.81		0.81			0.81	0.81		
PHF Volume: Reduct Vol:	212	1159	0	0	419	358	0	0	0	177		216		
				0		0	0			0	0	0		
Reduced Vol:					419		0	0	0	177		216		
PCE Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		
MLF Adj:				1.00	1.00				1.00		1.00	1.00		
FinalVolume:				0		358	0			177		216		
Saturation F	low Mo	odule	:											
Sat/Lane:	1900	1900	1900	1900	1900	1900	1900	1900			1900	1900		
Adjustment:						0.85	1.00	1.00	1.00	0.85	0.87	0.87		
Lanes:				0.00		1.00	0.00	0.00	0.00	1.00	0.12	0.88		
Final Sat.:	1805	3610	0	. 0	1900				0		191			
Capacity Anal				0 00	0 00	0 00	0 00	0 00	0 00	0 11	0 1 5	0 1 5		
Vol/Sat:		0.32	0.00	0.00	U.ZZ	0.22	0.00	0.00	0.00	0.11	0.15	0.15		
Crit Moves:		0 60	0 00			0 40	0 00		0 00	0 0 0		0 00		
Green/Cycle:					0.40			0.00			0.27	0.27		
Volume/Cap:			0.00		0.55	0.55		0.00			0.55	0.55		
Uniform Del:			0.0	0.0		18.4	0.0				25.0	25.0		
IncremntDel:			0.0		0.8	1.0	0.0		0.0	0.6		1.4		
InitQueuDel:		0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0		0.0		
Delay Adj:	1.00	1.00	0.00		1.00	1.00		0.00			1.00	1.00		
Delay/Veh:			0.0	0.0		19.4	0.0	0.0	0.0		26.4			
User DelAdj:			1.00		1.00	1.00		1.00	1.00		1.00	1.00		
AdjDel/Veh:				0.0		19.4	0.0				26.4			
LOS by Move:	C	A	A	A	В	В	A	A	A	C	С	С		
HCM2kAvgQ:														

Note: Queue reported is the number of cars per lane. **************************

______ ______

Level Of Service Computation Report 2000 HCM Operations Method (Base Volume Alternative)

****************** Intersection #20 Park Ave / SR-1 SB Ramps ******************** Cycle (sec): 75
Loss Time (sec): 9
Optimal Cycle: 39 Critical Vol./Cap.(X): 0.592 Average Delay (sec/veh): Level Of Service: Street Name: Park Ave SR-1 SB Ramps
Approach: North Bound South Bound East Bound West Bound
Movement: L - T - R L - T - R L - T - R -----||-----||------| Volume Module: Base Vol: 0 459 164 140 329 0 664 3 97 0 0 Initial Bse: 0 459 164 140 329 0 664 3 97 0 0 FinalVolume: 0 588 210 179 422 0 851 4 124 0 0 -----||-----||------| Saturation Flow Module: Final Sat.: 0 3610 1615 1805 1900 0 3291 15 1615 0 0 -----|-----||-------| Capacity Analysis Module: Vol/Sat: 0.00 0.16 0.13 0.10 0.22 0.00 0.26 0.26 0.08 0.00 0.00 0.00 Crit Moves: **** **** **** Volume/Cap: 0.00 0.59 0.47 0.59 0.50 0.00 0.59 0.59 0.18 0.00 0.00 0.00 Uniform Del: 0.0 23.5 22.6 28.8 14.9 0.0 16.0 16.0 12.9 0.0 0.0 0.0

Note: Queue reported is the number of cars per lane. *******************

Traffix 8.0.0715 (c) 2008 Dowling Assoc. Licensed to RBF, MONTEREY BAY

______ ______ Level Of Service Computation Report 2000 HCM 4-Way Stop Method (Base Volume Alternative) ****************** Intersection #21 Park Ave / Kennedy Dr ******************** Cycle (sec): 100 Critical Vol./Cap.(X): Loss Time (sec): 0 Average Delay (sec/veh): Optimal Cycle: 0 Level Of Service: Critical Vol./Cap.(X): 1.060 ************************** Street Name: Park Ave Kennedy Dr Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R -----||-----||------| -----||-----||------| Volume Module: Base Vol: 5 194 15 60 128 251 244 22 3 138 150 172 Initial Bse: 5 194 15 60 128 251 244 22 3 138 150 172 PHF Volume: 6 234 18 72 154 302 294 27 4 166 181 207 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 Reduced Vol: 6 234 18 72 154 302 294 27 4 166 181 207 FinalVolume: 6 234 18 72 154 302 294 27 4 166 181 207 Saturation Flow Module: -----||-----||-----| Capacity Analysis Module: Vol/Sat: 0.61 0.61 0.61 1.06 1.06 1.06 0.76 0.76 0.76 0.81 0.81 0.43 Crit Moves: **** **** Delay/Veh: 22.5 22.5 22.5 83.8 83.8 83.8 31.7 31.7 31.7 37.8 37.8 15.6 AdjDel/Veh: 22.5 22.5 22.5 83.8 83.8 83.8 31.7 31.7 31.7 37.8 37.8 15.6 LOS by Move: C C C F F F D D D E E C ApproachDel: 22.5 83.8 29.5 31.7 Delay Adj: ApprAdjDel: 1.00 1.00 1.00 1.00 31.7 ApprAdjDel: 22.5 83.8 31.7 29.5 LOS by Appr: C F D D AllWayAvgQ: 1.3 1.3 1.3 10.2 10.2 10.2 2.4 2.4 2.4 3.2 3.2

*************************** Note: Queue reported is the number of cars per lane. *****************

Ext PM Tue Oct 22, 2013 09:48:30

Scenario Report

Scenario: Ext PM

Command:

Volume:

Ext PM

Geometry:

Impact Fee:

Trip Generation:

Trip Distribution:

Paths:

Routes:

Configuration:

Default Command

Ext PM

Default Geometry

Default Impact Fee

Default Trip Generation

Default Trip Distribution

Default Path

Default Route

Configuration:

Default Configuration

Impact Analysis Report Level Of Service

Intersection	Base Del/ V/	Future Del/ V/	Change in		
# 1 41st Ave / SR-1 NB Ramps	LOS Veh C B 18.2 0.573	LOS Veh C B 18.2 0.573	+ 0.000 D/V		
# 2 41st Ave / SR-1 SB Ramps	A 6.3 0.785	A 6.3 0.785	+ 0.000 D/V		
# 3 41st Ave / Gross Rd	C 27.8 0.640	C 27.8 0.640	+ 0.000 D/V		
# 4 41st Ave / Clares St	C 30.7 0.699	C 30.7 0.699	+ 0.000 D/V		
# 5 41st Ave / Capitola Rd	C 24.0 0.650	C 24.0 0.650	+ 0.000 D/V		
# 6 41st Ave / Brommer St / Jade S	C 21.2 0.646	C 21.2 0.646	+ 0.000 D/V		
# 7 Clares St / Capitola Rd	C 23.6 0.838	C 23.6 0.838	+ 0.000 D/V		
# 8 Wharf Rd / Clares St	C 23.9 0.834	C 23.9 0.834	+ 0.000 V/C		
# 9 49th Ave / Capitola Rd	C 18.4 0.717	C 18.4 0.717	+ 0.000 V/C		
# 10 Wharf Rd / Cliff Dr / Stockton	C 24.6 0.783	C 24.6 0.783	+ 0.000 V/C		
# 11 Porter St / SR-1 NB Ramps	C 22.6 0.729	C 22.6 0.729	+ 0.000 D/V		
# 12 Bay Ave / SR-1 SB Ramps	C 20.2 0.691	C 20.2 0.691	+ 0.000 D/V		
# 13 Bay Ave / Hill St	C 17.6 0.597	C 17.6 0.597	+ 0.000 V/C		
# 14 Capitola Ave / Bay Ave	в 14.3 0.523	в 14.3 0.523	+ 0.000 V/C		
# 15 Monterey Ave / Bay Ave	B 10.3 0.457	в 10.3 0.457	+ 0.000 V/C		
# 16 Monterey Ave / Park Ave	C 18.7 0.791	C 18.7 0.791	+ 0.000 V/C		
# 17 Capitola Ave / Stockton Ave	C 22.1 0.809	C 22.1 0.809	+ 0.000 V/C		
# 18 Monterey Ave / Capitola Ave	C 19.7 0.816	C 19.7 0.816	+ 0.000 V/C		
# 19 Park Ave / SR-1 NB Ramps	в 18.0 0.585	в 18.0 0.585	+ 0.000 D/V		
# 20 Park Ave / SR-1 SB Ramps	B 16.8 0.477	в 16.8 0.477	+ 0.000 D/V		
# 21 Park Ave / Kennedy Dr	E 41.7 0.960	E 41.7 0.960	+ 0.000 V/C		

______ ______

Level Of Service Computation Report 2000 HCM Operations Method (Base Volume Alternative)

Intersection #1 41st Ave / SR-1 NB Ramps

************************* Cycle (sec): 90 Critical Vol./Cap.(X):
Loss Time (sec): 9 Average Delay (sec/veh):
Optimal Cycle: 38 Level Of Service: Critical Vol./Cap.(X):

************************** Street Name: 41st Ave SR-1 NB Ramps

Approach:												
Movement:												
Control:	ı P:	rotect	ed	P	rotect	ed	P	rotect	ted	Pr	otect	ed
Rights:		Ignor	е		Ignor	re .		Inclu	ıde		Inclu	ıde
Min. Green:									0			0
Y+R:				4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Lanes:						1 0			0 0			
Volume Module			'	'		'	'		'	'		'
Base Vol:	0	657	360	0	930	179	0	0	0	829	0	384
Growth Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Initial Bse:	0	657	360	0	930	179	0	0	0	829	0	384
User Adj:	1.00	1.00	0.00	1.00	1.00	0.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Adj:	0.96	0.96	0.00	0.96	0.96	0.00	0.96	0.96	0.96	0.96	0.96	0.96
PHF Volume:	0	684	0	0	969	0	0	0	0	864	0	400
Reduct Vol:	0	0	0	0	0	0	0	0	0	0	0	0
Reduced Vol:	0	684	0	0	969	0	0	0	0	864	0	400
PCE Adj:	1.00	1.00	0.00	1.00	1.00	0.00	1.00	1.00	1.00	1.00	1.00	1.00
MLF Adj:	1.00	1.00	0.00	1.00	1.00	0.00	1.00	1.00	1.00	1.00	1.00	1.00
FinalVolume:				0		0	0		0			400
Saturation F	low M	odule:										
Sat/Lane:	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Adjustment:				1.00		0.95		1.00		0.95		0.85
Lanes:			1.00			0.00		0.00		2.00	0.00	1.00
Final Sat.:				0		0				3618		1615
	1											
Capacity Anal	-											
Vol/Sat:						0.00	0.00	0.00	0.00	0.24	0.00	0.25
Crit Moves:												***
Green/Cycle:						0.00	0.00					0.43
Volume/Cap:	0.00	0.41	0.00	0.00	0.57	0.00	0.00	0.00	0.00	0.55	0.00	0.57

Note: Queue reported is the number of cars per lane.

Uniform Del: 0.0 15.7 0.0 0.0 17.4 0.0 0.0 0.0 19.1 0.0 19.3

Level Of Service Computation Report

2000 HCM Operations Method (Base Volume Alternative) ****************** Intersection #2 41st Ave / SR-1 SB Ramps ************************* Cycle (sec): 90 Critical Vol./Cap.(X):
Loss Time (sec): 9 Average Delay (sec/veh):
Optimal Cycle: 63 Level Of Service: Critical Vol./Cap.(X): 0.785 **************************

 Street Name:
 41st Ave
 SR-1 SB Ramps

 Approach:
 North Bound
 South Bound
 East Bound
 West Bound

 Movement:
 L - T - R
 L - T - R
 L - T - R

 -----||-----||------| Volume Module: Base Vol: 0 971 970 0 1380 359 62 0 128 0 0 Initial Bse: 0 971 970 0 1380 359 62 0 128 0 0 PHF Volume: 0 1067 1066 0 1516 0 68 0 141 0 0 0 Reduct Vol: 0 0 0 0 0 1067 1066 0 1516 0 68 0 141 0 0 0 FinalVolume: 0 1067 1066 0 1516 0 68 0 141 0 0 -----||-----||------| Saturation Flow Module: -----|-----||-------| Capacity Analysis Module: Vol/Sat: 0.00 0.30 0.66 0.00 0.29 0.00 0.05 0.00 0.04 0.00 0.00 0.00 **** Crit Moves: Green/Cycle: 0.00 0.84 0.84 0.00 0.84 0.00 0.06 0.00 0.06 0.00 0.00 0.00 Volume/Cap: 0.00 0.35 0.79 0.00 0.35 0.00 0.79 0.00 0.73 0.00 0.00 0.00 Uniform Del: 0.0 1.6 3.4 0.0 1.6 0.0 41.8 0.0 41.6 0.0 0.0 0.0

Note: Queue reported is the number of cars per lane.

Traffix 8.0.0715 (c) 2008 Dowling Assoc. Licensed to RBF, MONTEREY BAY

______ ______

Level Of Service Computation Report 2000 HCM Operations Method (Base Volume Alternative)

****************** Intersection #3 41st Ave / Gross Rd ************************* Critical Vol./Cap.(X): 0.640 Cycle (sec): 120 Loss Time (sec): 16
Optimal Cycle: 90 Average Delay (sec/veh): Level Of Service: ************************** Street Name:
41st Ave
Gross Rd
Approach: North Bound South Bound East Bound West Bound
Movement: L - T - R L - T - R L - T - R -----||-----||------| Volume Module: 42 18 80 Base Vol: 76 1452 31 44 1224 256 415 21 188 Initial Bse: 76 1452 31 44 1224 256 415 21 188 42 18 80 PHF Volume: 84 1596 34 48 1345 281 456 23 207 46 20 88 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reduced Vol: 84 1596 34 48 1345 281 456 23 207 46 20 88 FinalVolume: 84 1596 34 48 1345 281 456 23 207 46 20 88 -----|----||------| Saturation Flow Module: Final Sat.: 1805 5063 108 1805 4178 874 3454 175 1615 1285 551 1615 -----|-----||-------| Capacity Analysis Module: Vol/Sat: 0.05 0.32 0.32 0.03 0.32 0.32 0.13 0.13 0.13 0.04 0.04 0.05 **** Crit Moves: **** Green/Cycle: 0.07 0.53 0.53 0.05 0.50 0.50 0.21 0.21 0.21 0.09 0.09 0.09 Volume/Cap: 0.64 0.59 0.59 0.59 0.64 0.64 0.64 0.62 0.42 0.42 0.64 Uniform Del: 54.1 19.3 19.3 56.2 21.9 21.9 43.5 43.5 43.3 52.1 52.1 53.1

Note: Queue reported is the number of cars per lane.

Intersection #4 41st Ave / Clares St ******************** Critical Vol./Cap.(X): 0.699 Cycle (sec): 100 Loss Time (sec): 16 Optimal Cycle: 69 Average Delay (sec/veh): Level Of Service: ************************ Street Name: 41st Ave Clares St

Approach: North Bound South Bound East Bound West Bound

Movement: L - T - R L - T - R L - T - R -----||-----||------| Volume Module: Base Vol: 59 999 64 167 818 405 416 122 41 41 105 133 Initial Bse: 59 999 64 167 818 405 416 122 41 41 105 133 PHF Volume: 63 1074 69 180 880 435 447 131 44 44 113 143 FinalVolume: 63 1074 69 180 880 435 447 131 44 44 113 143 -----|----||------| Saturation Flow Module: -----|-----||-------| Capacity Analysis Module: Vol/Sat: 0.04 0.22 0.22 0.10 0.17 0.27 0.10 0.18 0.18 0.08 0.08 0.09 Crit Moves: **** **** **** Green/Cycle: 0.05 0.32 0.32 0.14 0.41 0.41 0.26 0.26 0.26 0.12 0.12 0.26 Volume/Cap: 0.66 0.70 0.70 0.70 0.42 0.66 0.40 0.70 0.70 0.70 0.70 0.34 Uniform Del: 46.5 29.9 29.9 40.8 21.1 24.0 30.6 33.5 33.5 42.3 42.3 29.9

Note: Queue reported is the number of cars per lane.

Level Of Service Computation Report 2000 HCM Operations Method (Base Volume Alternative)

Intersection #5 41st Ave / Capitola Rd

************************** Street Name:
41st Ave
Capitola Rd
Approach: North Bound South Bound East Bound West Bound
Movement: L - T - R L - T - R L - T - R -----||-----||------| Volume Module: Base Vol: 140 634 113 181 560 95 312 310 84 177 303 91 Initial Bse: 140 634 113 181 560 95 312 310 84 177 303 91 PHF Volume: 143 647 115 185 571 97 318 316 86 181 309 93 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 Reduced Vol: 143 647 115 185 571 97 318 316 86 181 309 93 FinalVolume: 143 647 115 185 571 97 318 316 86 181 309 93 -----||-----||------| Saturation Flow Module: Final Sat.: 1805 3610 1615 3502 3610 1615 1805 2749 745 1735 2669 802 -----|-----||-------| Capacity Analysis Module: Vol/Sat: 0.08 0.18 0.07 0.05 0.16 0.06 0.18 0.12 0.12 0.10 0.12 0.12 Crit Moves: **** **** Green/Cycle: 0.12 0.28 0.28 0.08 0.24 0.24 0.27 0.27 0.27 0.18 0.18 0.18 Volume/Cap: 0.65 0.63 0.25 0.63 0.65 0.25 0.65 0.42 0.42 0.58 0.65 0.65 Uniform Del: 27.2 20.4 18.0 28.8 22.1 19.8 20.9 19.5 19.5 24.5 24.8 24.8 *************************

Note: Queue reported is the number of cars per lane.

______ ______

Level Of Service Computation Report 2000 HCM Operations Method (Base Volume Alternative)

****************** Intersection #6 41st Ave / Brommer St / Jade St ******************** Cycle (sec): 60
Loss Time (sec): 12
Optimal Cycle: 47 Critical Vol./Cap.(X): 0.646 Average Delay (sec/veh):
Level Of Service: 21.2 ************************** Street Name: 41st Ave Brommer St / Jade St Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R -----||-----||------| Volume Module: Base Vol: 57 548 86 56 578 118 164 164 71 73 104 72 Initial Bse: 57 548 86 56 578 118 164 164 71 73 104 72 FinalVolume: 59 565 89 58 596 122 169 169 73 75 107 74 -----||-----||------| Saturation Flow Module: Final Sat.: 1805 3058 480 1805 2923 597 927 927 1615 768 1094 1615 -----|-----||-------| Capacity Analysis Module: Vol/Sat: 0.03 0.18 0.18 0.03 0.20 0.20 0.18 0.18 0.05 0.10 0.10 0.05 Crit Moves: **** **** Green/Cycle: 0.05 0.31 0.31 0.05 0.32 0.32 0.28 0.28 0.28 0.15 0.15 0.15 Volume/Cap: 0.65 0.59 0.59 0.59 0.65 0.65 0.65 0.65 0.16 0.65 0.65 0.30 Uniform Del: 28.0 17.4 17.4 27.7 17.7 17.7 18.9 18.9 16.2 23.9 23.9 22.6

Note: Queue reported is the number of cars per lane.

Tue Oct 22, 2013 09:48:32 ______ ______ Level Of Service Computation Report 2000 HCM Operations Method (Base Volume Alternative) ****************** Intersection #7 Clares St / Capitola Rd ******************** Critical Vol./Cap.(X): 0.838

Cycle (sec): 60
Loss Time (sec): 12
Optimal Cycle: 69 Average Delay (sec/veh): Level Of Service: 23.6 ************************** Street Name: Clares St Capitola Rd
Approach: North Bound South Bound East Bound West Bound
Movement: L - T - R L - T - R L - T - R -----||-----||------| Volume Module: Base Vol: 0 0 0 164 0 474 328 841 0 0 480 111 Initial Bse: 0 0 0 164 0 474 328 841 0 0 480 111 PHF Volume: 0 0 0 171 0 494 342 876 0 0 500 116 FinalVolume: 0 0 0 171 0 494 342 876 0 0 500 116 -----||-----||------| Saturation Flow Module: -----|-----||-------| Capacity Analysis Module: Vol/Sat: 0.00 0.00 0.00 0.09 0.00 0.31 0.19 0.24 0.00 0.00 0.18 0.18 Crit Moves: **** Green/Cycle: 0.00 0.00 0.00 0.36 0.00 0.36 0.23 0.44 0.00 0.00 0.21 0.21 Volume/Cap: 0.00 0.00 0.00 0.26 0.00 0.84 0.84 0.56 0.00 0.00 0.84 0.84 Uniform Del: 0.0 0.0 0.0 13.4 0.0 17.4 22.2 12.6 0.0 0.0 22.7 22.7

Note: Queue reported is the number of cars per lane.

______ ______ Level Of Service Computation Report 2000 HCM 4-Way Stop Method (Base Volume Alternative) ****************** Intersection #8 Wharf Rd / Clares St ******************** Cycle (sec): 100 Critical Vol./Cap.(X): Loss Time (sec): 0 Average Delay (sec/veh): Optimal Cycle: 0 Level Of Service: Critical Vol./Cap.(X): 0.834 23.9 ************************ Street Name: Wharf Rd Clares St Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R -----||-----||------| -----||-----||------| Volume Module: Base Vol: 35 467 0 0 278 171 276 0 57 0 0 Initial Bse: 35 467 0 0 278 171 276 0 57 0 0 PHF Volume: 36 481 0 0 287 176 285 0 59 0 0 0 Reduct Vol: 0 0 0 0 287 176 285 0 59 0 0 0 Reduced Vol: 36 481 0 0 287 176 285 0 59 0 0 FinalVolume: 36 481 0 0 287 176 285 0 59 0 0 Saturation Flow Module: -----||-----||-----| Capacity Analysis Module: Vol/Sat: 0.83 0.83 xxxx xxxx 0.73 0.73 0.63 0.00 0.63 xxxx xxxx xxxx Crit Moves: **** *** Delay/Veh: 29.7 29.7 0.0 0.0 21.5 21.5 18.3 18.3 18.3 0.0 0.0 0.0 AdjDel/Veh: 29.7 29.7 0.0 0.0 21.5 21.5 18.3 18.3 18.3 0.0 0.0 0.0 LOS by Move: D D * * C C C C * * 21.5 ApproachDel: 29.7 18.3 XXXXXX Delay Adj: ApprAdjDel: 1.00 1.00 1.00 XXXXX 21.5 ApprAdjDel: 29.7 21.5 18.3 xxxxxx LOS by Appr: D C C * AllWayAvgQ: 3.6 3.6 3.6 2.3 2.3 2.3 1.4 1.4 1.4 0.0 0.0 18.3 ***************************

Note: Queue reported is the number of cars per lane. *****************

______ ______ Level Of Service Computation Report 2000 HCM 4-Way Stop Method (Base Volume Alternative) ****************** Intersection #9 49th Ave / Capitola Rd ************************* Cycle (sec): 100 Critical Vol./Cap.(X): Loss Time (sec): 0 Average Delay (sec/veh): Optimal Cycle: 0 Level Of Service: Critical Vol./Cap.(X): 0.717 ************************** Street Name: 49th Ave Capitola Rd Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R -----||-----||------| -----||-----||------| Volume Module: Base Vol: 6 58 23 63 66 191 370 376 11 14 200 Initial Bse: 6 58 23 63 66 191 370 376 11 14 200 13 PHF Volume: 6 60 24 65 68 197 381 388 11 14 206 13 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 0 Reduced Vol: 6 60 24 65 68 197 381 388 11 14 206 13 FinalVolume: 6 60 24 65 68 197 381 388 11 14 206 13 Saturation Flow Module: -----||-----||------| Capacity Analysis Module: Vol/Sat: 0.20 0.20 0.20 0.28 0.28 0.37 0.72 0.69 0.69 0.03 0.43 0.43 Crit Moves: **** **** **** Delay/Veh: 12.0 12.0 12.0 12.9 12.9 12.6 24.2 21.3 21.3 10.4 14.5 14.5 AdjDel/Veh: 12.0 12.0 12.0 12.9 12.9 12.6 24.2 21.3 21.3 10.4 14.5 14.5 LOS by Move: B B B B B C C C B B B ApproachDel: 12.0 12.7 22.7 14.2 Delay Adj: ApprAdjDel: 1.00 1.00 1.00 1.00 12.7 ApprAdjDel: 12.0 LOS by Appr: B 22.7 14.2 В C AllWayAvgO: 0.2 0.2 0.2 0.4 0.4 0.5 2.2 2.0 2.0 0.0 0.7

*************************** Note: Queue reported is the number of cars per lane. *****************

```
______
______
           Level Of Service Computation Report
      2000 HCM 4-Way Stop Method (Base Volume Alternative)
******************
Intersection #10 Wharf Rd / Cliff Dr / Stockton Ave
********************
Cycle (sec): 100
                    Critical Vol./Cap.(X): 0.783
Loss Time (sec):

Optimal Cycle:

0

Average Delay (sec/veh):
Level Of Service:
                                    24.6
                                      C
****************************
Street Name: Wharf Rd Cliff Dr / Stockton Ave
Approach: North Bound South Bound East Bound West Bound
Movement: L - T - R L - T - R L - T - R
-----||-----||------|
-----||-----||------|
Volume Module:
Base Vol: 2 3 5 396 10 11 12 436 0 7 350
Initial Bse: 2 3 5 396 10 11 12 436 0 7 350
PHF Volume: 2 3 5 400 10 11 12 440 0 7 354 0 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 Reduced Vol: 2 3 5 400 10 11 12 440 0 7 354 0
FinalVolume: 2 3 5 400 10 11 12 440 0 7 354 0
Saturation Flow Module:
-----||-----||-----|
Capacity Analysis Module:
Vol/Sat: 0.02 0.02 0.02 0.77 0.77 0.77 0.78 0.78 xxxx 0.69 0.69 0.00
Crit Moves: ****
               ****
                        ***
Delay/Veh: 10.3 10.3 10.3 25.7 25.7 25.7 26.4 26.4 0.0 21.6 21.6 0.0
AdjDel/Veh: 10.3 10.3 10.3 25.7 25.7 25.7 26.4 26.4 0.0 21.6 21.6 0.0
LOS by Move: B B B D D D D * C C
ApproachDel: 10.3
                 25.7
                          26.4
                                   21.6
Delay Adj:
ApprAdjDel:
                  1.00
                           1.00
        1.00
                                    1.00
                25.7
ApprAdjDel: 10.3 25.7 26.4 21.6 LOS by Appr: B D D C AllWayAvgQ: 0.0 0.0 0.0 2.5 2.5 2.5 2.8 2.8 2.8 1.8 1.8
                          26.4
*************************
Note: Queue reported is the number of cars per lane.
```

______ ______

Level Of Service Computation Report 2000 HCM Operations Method (Base Volume Alternative) ******************

************************* Cycle (sec): 85
Loss Time (sec): 9
Optimal Cycle: 53 Critical Vol./Cap.(X): 0.729 Average Delay (sec/veh): Level Of Service: 22.6

Intersection #11 Porter St / SR-1 NB Ramps

Street Name: Porter St SR-1 NB Ramps
Approach: North Bound South Bound East Bound West Bound
Movement: L - T - R L - T - R L - T - R -----||-----||------| Volume Module: Base Vol: 272 482 0 0 764 284 0 0 0 146 3 276 Initial Bse: 272 482 0 0 764 284 0 0 0 146 3 276 PHF Volume: 283 502 0 0 796 296 0 0 152 3 288 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reduced Vol: 283 502 0 0 796 296 0 0 0 152 3 288 FinalVolume: 283 502 0 0 796 296 0 0 152 3 288 -----||-----||------| Saturation Flow Module: Final Sat.: 1805 3610 0 0 2524 938 0 0 0 1615 17 1601 -----|-----||-------| Capacity Analysis Module: Vol/Sat: 0.16 0.14 0.00 0.00 0.32 0.32 0.00 0.00 0.00 0.09 0.18 0.18 Crit Moves: **** Green/Cycle: 0.22 0.65 0.00 0.00 0.43 0.43 0.00 0.00 0.00 0.25 0.25 0.25 Volume/Cap: 0.73 0.21 0.00 0.00 0.73 0.73 0.00 0.00 0.00 0.38 0.73 0.73 Uniform Del: 31.0 6.1 0.0 0.0 20.0 20.0 0.0 0.0 0.0 26.7 29.4 29.4

Note: Queue reported is the number of cars per lane.

Traffix 8.0.0715 (c) 2008 Dowling Assoc. Licensed to RBF, MONTEREY BAY

**************************** Street Name: Bay Ave SR-1 SB Ramps
Approach: North Bound South Bound East Bound West Bound
Movement: L - T - R L - T - R L - T - R -----||-----||------| Volume Module: Base Vol: 0 550 185 366 543 0 219 21 333 0 0 Initial Bse: 0 550 185 366 543 0 219 21 333 0 0 0 FinalVolume: 0 561 189 373 554 0 223 21 340 0 0 0 -----||-----||------| Saturation Flow Module: Final Sat.: 0 2599 874 1805 3610 0 2239 116 2553 0 0 -----|-----||-------| Capacity Analysis Module: Vol/Sat: 0.00 0.22 0.22 0.21 0.15 0.00 0.10 0.19 0.13 0.00 0.00 0.00 *** Crit Moves: **** *** Green/Cycle: 0.00 0.31 0.31 0.30 0.61 0.00 0.27 0.27 0.27 0.00 0.00 0.00 Volume/Cap: 0.00 0.69 0.69 0.69 0.25 0.00 0.37 0.69 0.50 0.00 0.00 0.00 Uniform Del: 0.0 22.6 22.6 23.2 6.7 0.0 22.3 24.7 23.2 0.0 0.0 0.0 Uniform Del: U.U 22.6 22.6 23.2 6.7 U.U 22.3 24.7 23.2 U.U 0.0 0.0 IncremntDel: 0.0 1.9 1.9 3.8 U.L 0.0 0.1 2.5 U.U 0.0 0.0 U.U 0.0 InitQueuDel: 0.0 0.0 U.U 0

Note: Queue reported is the number of cars per lane.

Traffix 8.0.0715 (c) 2008 Dowling Assoc. Licensed to RBF, MONTEREY BAY

______ ______ Level Of Service Computation Report 2000 HCM 4-Way Stop Method (Base Volume Alternative) ****************** Intersection #13 Bay Ave / Hill St ************************* Cycle (sec): 100 Critical Vol./Cap.(X): Loss Time (sec): 0 Average Delay (sec/veh): Optimal Cycle: 0 Level Of Service: Critical Vol./Cap.(X): 0.597 Cycle (sec): 100 17.6 **************************** Street Name: Bay Ave Hill St Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R -----||-----||------| Control: Stop Sign Stop Sign Stop Sign Stop Sign Rights: Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 Lanes: 1 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 -----||-----||------| Volume Module: Base Vol: 94 316 20 185 459 61 129 52 75 24 35 Initial Bse: 94 316 20 185 459 61 129 52 75 24 35 113 PHF Volume: 101 340 22 199 494 66 139 56 81 26 38 122 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 Reduced Vol: 101 340 22 199 494 66 139 56 81 26 38 122 FinalVolume: 101 340 22 199 494 66 139 56 81 26 38 122 Saturation Flow Module: -----||-----||-----| Capacity Analysis Module: Vol/Sat: 0.25 0.42 0.42 0.46 0.60 0.59 0.47 0.47 0.17 0.41 0.41 0.41 Crit Moves: **** **** Delay/Veh: 14.2 16.4 16.3 17.3 20.5 20.0 17.9 17.9 11.5 15.6 15.6 15.6 AdjDel/Veh: 14.2 16.4 16.3 17.3 20.5 20.0 17.9 17.9 11.5 15.6 15.6 15.6 LOS by Move: B C C C C C C B C C ApproachDel: 15.9 19.6 16.0 15.6 Delay Adj: ApprAdjDel: 1.00 1.00 1.00 1.00 19.6 ApprAdjDel: 15.9 LOS by Appr: C 16.0 15.6 C C C AllWayAvqO: 0.3 0.7 0.6 0.8 1.4 1.3 0.8 0.8 0.2 0.6 0.6 ****************************

Note: Queue reported is the number of cars per lane. *****************

______ ______ Level Of Service Computation Report 2000 HCM 4-Way Stop Method (Base Volume Alternative) ******************

Intersection #14 Capitola Ave / Bay Ave ************************ Cycle (sec): 100
Loss Time (sec): 0
Optimal Cycle: 0 Critical Vol./Cap.(X): 0.523 Average Delay (sec/veh): Level Of Service: ************************ Street Name: Capitola Ave Bay Ave
Approach: North Bound South Bound East Bound West Bound
Movement: L - T - R L - T - R L - T - R -----||-----||------|
 Control:
 Stop Sign
 Stop Sign
 Stop Sign
 Stop Sign

 Rights:
 Include
 Include
 Include
 Include

 Min. Green:
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0

 Lanes:
 0 1 0 0 1 0 0 1! 0 0 0 1! 0 0 1 0 0 1 0 0 1 0
 0 1 0 0 1 0 0 1 0
 -----||-----||------| Volume Module: Base Vol: 138 107 7 34 88 31 20 244 170 47 218 Initial Bse: 138 107 7 34 88 31 20 244 170 47 218 37 PHF Volume: 142 110 7 35 91 32 21 252 175 48 225 38 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 0 Reduced Vol: 142 110 7 35 91 32 21 252 175 48 225 38 FinalVolume: 142 110 7 35 91 32 21 252 175 48 225 38 Saturation Flow Module: -----||-----||------| Capacity Analysis Module: Vol/Sat: 0.52 0.52 0.01 0.33 0.33 0.51 0.51 0.29 0.10 0.49 0.49 Crit Moves: **** **** **** Delay/Veh: 16.7 16.7 8.9 13.1 13.1 15.2 15.2 10.6 10.5 14.9 14.9 AdjDel/Veh: 16.7 16.7 8.9 13.1 13.1 15.2 15.2 10.6 10.5 14.9 14.9 LOS by Move: C C A B B B C C B B B B ApproachDel: 16.5 13.1 13.4 14.2 Delay Adj: ApprAdjDel: 1.00 1.00 1.00 1.00 13.1 ApprAdjDel: 16.5 LOS by Appr: C 13.4 14.2

**************************** Note: Queue reported is the number of cars per lane. *************************

В

AllWayAvqO: 0.9 0.9 0.0 0.4 0.4 0.4 0.9 0.9 0.4 0.1 0.8

______ Level Of Service Computation Report 2000 HCM 4-Way Stop Method (Base Volume Alternative) ****************** Intersection #15 Monterey Ave / Bay Ave ************************ Cycle (sec): 100 Loss Time (sec): 0 Optimal Cycle: 0 Critical Vol./Cap.(X): 0.457 Average Delay (sec/veh): Level Of Service: ************************ Street Name: Monterey Ave Bay Ave Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R -----||-----||------| -----||-----||------| Volume Module: Base Vol: 169 49 0 0 35 122 136 0 194 0 0 Initial Bse: 169 49 0 0 35 122 136 0 194 0 0 PHF Volume: 178 52 0 0 37 128 143 0 204 0 0 0 Reduct Vol: 0 0 0 37 128 143 0 204 0 0 0 0 Reduced Vol: 178 52 0 0 37 128 143 0 204 0 0 0 FinalVolume: 178 52 0 0 37 128 143 0 204 0 0 Saturation Flow Module: -----||-----||-----| Capacity Analysis Module: Vol/Sat: 0.34 0.34 xxxx xxxx 0.22 0.22 0.46 xxxx 0.46 xxxx xxxx xxxx Crit Moves: **** Delay/Veh: 10.4 10.4 0.0 0.0 8.7 8.7 11.0 0.0 11.0 0.0 0.0 0.0 AdjDel/Veh: 10.4 10.4 0.0 0.0 8.7 8.7 11.0 0.0 11.0 0.0 0.0 0.0 LOS by Move: B B * * A A B * B * * ApproachDel: 10.4 8.7 11.0 xxxxxx ApproachDel: 10.4 Delay Adj: ApprAdjDel: 1.00 1.00 1.00 XXXXX 8.7 ApprAdjDel: 10.4 LOS by Appr: B 11.0 xxxxxx LOS by Appr: B A B * AllWayAvgQ: 0.4 0.4 0.4 0.2 0.2 0.2 0.7 0.7 0.7 0.0 0.0

**************************** Note: Queue reported is the number of cars per lane. *****************

______ Level Of Service Computation Report 2000 HCM 4-Way Stop Method (Base Volume Alternative) ****************** Intersection #16 Monterey Ave / Park Ave ************************ Cycle (sec): 100 Loss Time (sec): 0 Optimal Cycle: 0 Critical Vol./Cap.(X): 0.791 Average Delay (sec/veh): Level Of Service: ************************ Street Name: Monterey Ave Park Ave Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R -----||-----||------| -----| Volume Module: Initial Bse: 2 162 492 120 103 3 6 4 10 260 3 52 PHF Volume: 2 174 529 129 111 3 6 4 11 280 3 56 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 Reduced Vol: 2 174 529 129 111 3 6 4 11 280 3 56 FinalVolume: 2 174 529 129 111 3 6 4 11 280 3 56 Saturation Flow Module: -----||-----||-----| Capacity Analysis Module: Vol/Sat: 0.30 0.30 0.79 0.47 0.47 0.01 0.05 0.05 0.05 0.60 0.60 0.60 Crit Moves: **** Delay/Veh: 11.2 11.2 24.4 14.9 14.9 8.5 9.9 9.9 9.9 17.2 17.2 17.2 AdjDel/Veh: 11.2 11.2 24.4 14.9 14.9 8.5 9.9 9.9 9.9 17.2 17.2 17.2 LOS by Move: B B C B B A A A A C C C ApproachDel: 21.1 9.9 14.8 17.2 Delay Adj: ApprAdjDel: 1.00 1.00 1.00 1.00 14.8 B 9.9 ApprAdjDel: 21.1 14.8 9.9 17.2 LOS by Appr: C B A C AllWayAvgQ: 0.4 0.4 3.0 0.8 0.8 0.0 0.0 0.0 0.0 1.3 1.3 ****************************

Note: Queue reported is the number of cars per lane. *****************

______ ______ Level Of Service Computation Report 2000 HCM 4-Way Stop Method (Base Volume Alternative) ****************** Intersection #17 Capitola Ave / Stockton Ave ************************* Cycle (sec): 100 Critical Vol./Cap.(X): 0.809 Loss Time (sec): 0 Optimal Cycle: 0 Average Delay (sec/veh): Level Of Service: **************************** Street Name: Capitola Ave Stockton Ave Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R -----||-----||------| Control: Stop Sign Stop Sign Stop Sign Stop Sign Rights: Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 Lanes: 1 0 0 1! 0 0 0 0 0 0 0 0 0 -----||-----||------| Volume Module: Base Vol: 215 0 462 5 32 13 0 19 282 367 26 Initial Bse: 215 0 462 5 32 13 0 19 282 367 26 0 PHF Volume: 224 0 481 5 33 14 0 20 294 382 27 0 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 0 Reduced Vol: 224 0 481 5 33 14 0 20 294 382 27 0 FinalVolume: 224 0 481 5 33 14 0 20 294 382 27 0 Saturation Flow Module: -----||-----||-----| Capacity Analysis Module: Vol/Sat: 0.45 xxxx 0.81 0.12 0.12 0.12 xxxx 0.54 0.54 0.75 0.75 xxxx Crit Moves: **** **** Delay/Veh: 15.5 0.0 28.0 11.1 11.1 11.1 0.0 15.2 15.2 25.3 25.3 0.0 AdjDel/Veh: 15.5 0.0 28.0 11.1 11.1 11.1 0.0 15.2 15.2 25.3 25.3 0.0 LOS by Move: C * D B B B * C C D D * ApproachDel: 24.1 15.2 11.1 25.3 Delay Adj: ApprAdjDel: 1.00 1.00 1.00 1.00 11.1 15.2 ApprAdjDel: 24.1 LOS by Appr: C 25.3 В C AllWayAvgO: 0.8 0.0 3.2 0.1 0.1 0.1 1.0 1.0 1.0 2.4 2.4 ****************************

Note: Queue reported is the number of cars per lane.

______ ______ Level Of Service Computation Report 2000 HCM 4-Way Stop Method (Base Volume Alternative) ****************** Intersection #18 Monterey Ave / Capitola Ave ************************* Cycle (sec): 100 Critical Vol./Cap.(X): 0.816 Average Delay (sec/veh): Level Of Service: Loss Time (sec): 0 Optimal Cycle: 0 **************************** Street Name: Monterey Ave Capitola Ave Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R -----||-----||------| -----| Volume Module: Base Vol: 75 123 0 0 0 350 495 0 0 Initial Bse: 75 123 0 0 0 350 495 0 0 0 0 FinalVolume: 79 129 0 0 0 368 521 0 0 0 0 Saturation Flow Module: -----||-----||-----| Capacity Analysis Module: Vol/Sat: 0.37 0.37 xxxx xxxx xxxx 0.55 0.82 xxxx xxxx xxxx xxxx xxxx Crit Moves: **** **** **** Delay/Veh: 12.2 12.2 0.0 0.0 0.0 13.7 27.0 0.0 0.0 0.0 0.0 0.0 AdjDel/Veh: 12.2 12.2 0.0 0.0 0.0 13.7 27.0 0.0 0.0 0.0 0.0 0.0 LOS by Move: B B * * * B D * ApproachDel: 12.2 13.7 27.0 * * * ApproachDel: 12.2 27.0 XXXXXX Delay Adj: ApprAdjDel: 1.00 1.00 1.00 XXXXX 13.7 27.0 ApprAdjDel: 12.2 LOS by Appr: B xxxxxx

Note: Queue reported is the number of cars per lane.

D

В

AllWayAvgO: 0.5 0.5 0.5 1.0 1.0 1.0 3.3 3.3 0.0 0.0 ************************* ______

Level Of Service Computation Report

2000 HCM Operations Method (Base Volume Alternative) ****************** Intersection #19 Park Ave / SR-1 NB Ramps ************************ Cycle (sec): 80
Loss Time (sec): 9
Optimal Cycle: 39 Critical Vol./Cap.(X): 0.585 Average Delay (sec/veh): Level Of Service: **************************** Street Name: Park Ave SR-1 NB Ramps
Approach: North Bound South Bound East Bound West Bound
Movement: L - T - R L - T - R L - T - R -----||-----||------| Volume Module: Base Vol: 98 405 0 0 464 392 0 0 0 238 6 251 Initial Bse: 98 405 0 0 464 392 0 0 0 238 6 251 PHF Volume: 111 460 0 0 527 445 0 0 0 270 7 285 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reduced Vol: 111 460 0 0 527 445 0 0 0 270 7 285 FinalVolume: 111 460 0 0 527 445 0 0 0 270 7 285 -----|----||------| Saturation Flow Module: Final Sat.: 1805 3610 0 0 1900 1615 0 0 0 1615 38 1583 -----|-----||-------| Capacity Analysis Module: Vol/Sat: 0.06 0.13 0.00 0.00 0.28 0.28 0.00 0.00 0.00 0.17 0.18 0.18 Crit Moves: **** Green/Cycle: 0.11 0.58 0.00 0.00 0.47 0.47 0.00 0.00 0.00 0.31 0.31 0.31 Volume/Cap: 0.59 0.22 0.00 0.00 0.59 0.58 0.00 0.00 0.00 0.54 0.59 0.59 Uniform Del: 34.1 8.1 0.0 0.0 15.3 15.3 0.0 0.0 0.0 23.0 23.4 23.4 *************************

Note: Queue reported is the number of cars per lane.

Traffix 8.0.0715 (c) 2008 Dowling Assoc. Licensed to RBF, MONTEREY BAY

Level Of Service Computation Report

Level Of Service Computation Report 2000 HCM Operations Method (Base Volume Alternative)												

Intersection #20 Park Ave / SR-1 SB Ramps ************************************												
Cycle (sec): 75						al Vol./Cap.(X):						
Loss Time (sec): 9								e Delay (sec/veh):				
Optimal Cycle	≘∶	:	32					f Service:			В	

Street Name:				Ave					SR-1 SB	Ramps	3	
Approach:	No					ound					est Bo	
Movement:						- R						
Control:				Pi		ced					Permit	
Rights:	Include		Include		Include			Include				
Min. Green:		0	0		0	0		0	0		0	0
	4.0					4.0						4.0
Lanes:						0 0			0 1		0 0	
Volume Module Base Vol:	· 0	273	278	283	416	0	235	3	102	0	0	0
Growth Adj:		1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00
Initial Bse:		273	278	283	416	0	235	3	102	0	0	0
User Adj:		1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00
PHF Adj:			0.95		0.95	0.95		0.95	0.95		0.95	0.95
PHF Volume:			293	298	438	0.55	247	3	107	0.55	0.55	0.55
Reduct Vol:			0	0	0	0	0	0	0	0	0	0
Reduced Vol:			293	298		0	247	3	107	0	0	0
PCE Adj:			1.00		1.00	1.00		1.00	1.00		1.00	1.00
MLF Adj:			1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
FinalVolume:	0	287	293	298	438	0	247	3	107	0	0	0
Saturation F	low Mo	odule	:			•						
Sat/Lane:	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Adjustment:	1.00	0.95	0.85	0.95	1.00	1.00	0.90	0.90	0.85	1.00	1.00	1.00
Lanes:			1.00		1.00	0.00		0.03	1.00		0.00	0.00
Final Sat.:			1615		1900			43	1615		0	0
Capacity Anal				0 1 5		0 00			0 0 0		0 00	0 00
Vol/Sat:			0.18 ****	0.17 ****	0.23	0.00	0.07	0.07	0.07	0.00	0.00	0.00
Crit Moves:		0 20			0 73	0 00	0 15		0 1 5	0 00	0 00	0 00
Green/Cycle:					0.73	0.00		0.15	0.15		0.00	0.00
Volume/Cap: Uniform Del:			0.48 17.6		0.32	0.00		0.48	0.43 28.7	0.00	0.00	0.00
IncremntDel:			0.6		0.1	0.0	0.7		1.2		0.0	0.0
InitQueuDel:	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.7	0.0	0.0	0.0	0.0
Delay Adj:		1.00	1.00		1.00	0.00		1.00	1.00		0.00	0.00
Delay/Veh:		15.7	18.2	19.8	3.8	0.0	29.6		29.9	0.0	0.0	0.0
User DelAdj:			1.00		1.00	1.00		1.00	1.00		1.00	1.00
AdjDel/Veh:		15.7	18.2	19.8	3.8	0.0	29.6		29.9	0.0	0.0	0.0
LOS by Move:	A	В	В	В	A	A	C	C	C	A	A	A
HCM2kAvgQ:	0	2	6	5	4	0	3	3	3	0	0	0
*****	* * * * *	****	*****	****	****	*****	****	*****	*****	****	*****	*****

Traffix 8.0.0715 (c) 2008 Dowling Assoc. Licensed to RBF, MONTEREY BAY

______ ______ Level Of Service Computation Report 2000 HCM 4-Way Stop Method (Base Volume Alternative) ****************** Intersection #21 Park Ave / Kennedy Dr ************************ Cycle (sec): 100 Critical Vol./Cap.(X): Loss Time (sec): 0 Average Delay (sec/veh): Optimal Cycle: 0 Level Of Service: Critical Vol./Cap.(X): 0.960 41.7 **************************** Street Name: Park Ave Kennedy Dr Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R -----||-----||------| -----| Volume Module: Base Vol: 4 300 189 161 135 182 178 113 3 41 55 Initial Bse: 4 300 189 161 135 182 178 113 3 41 55 89 PHF Volume: 4 313 197 168 141 190 185 118 3 43 57 93 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reduced Vol: 4 313 197 168 141 190 185 118 3 43 57 93 FinalVolume: 4 313 197 168 141 190 185 118 3 43 57 93 Saturation Flow Module: -----||-----||-----| Capacity Analysis Module: Vol/Sat: 0.96 0.96 0.96 0.95 0.95 0.95 0.68 0.68 0.68 0.25 0.25 0.21 Crit Moves: **** **** **** Delay/Veh: 53.7 53.7 53.7 50.7 50.7 50.7 24.7 24.7 24.7 14.1 14.1 12.4 AdjDel/Veh: 53.7 53.7 53.7 50.7 50.7 50.7 24.7 24.7 24.7 14.1 14.1 12.4 LOS by Move: F F F F F C C B B B ApproachDel: 53.7 50.7 24.7 13.3 Delay Adj: ApprAdjDel: 1.00 1.00 1.00 1.00 50.7 ApprAdjDel: 53.7 LOS by Appr: F AllWayAyro 24.7 13.3 C AllWayAvqO: 6.5 6.5 6.0 6.0 6.0 1.7 1.7 1.7 0.3 0.3

Note: Queue reported is the number of cars per lane.

2035 AM Tue Oct 22, 2013 09:48:38

Scenario Report

2035 AM Scenario:

Command:

Volume:

2035 AM

Geometry:

Impact Fee:

Trip Generation:

Trip Distribution:

Paths:

Routes:

Configuration:

Default Command

2035 AM

Default Geometry

Default Impact Fee

Default Trip Generation

Default Trip Distribution

Default Path

Default Route

Configuration:

Default Configuration

Impact Analysis Report Level Of Service

Intersection	Base Del/ V/	Future Del/ V/	Change in	
# 1 41st Ave / SR-1 NB Ramps	LOS Veh C B 17.9 0.580	LOS Veh C B 17.9 0.580	+ 0.000 D/V	
# 2 41st Ave / SR-1 SB Ramps	в 17.9 0.891	в 17.9 0.891	+ 0.000 D/V	
# 3 41st Ave / Gross Rd	C 20.8 0.690	C 20.8 0.690	+ 0.000 D/V	
# 4 41st Ave / Clares St	C 25.2 0.521	C 25.2 0.521	+ 0.000 D/V	
# 5 41st Ave / Capitola Rd	C 22.6 0.596	C 22.6 0.596	+ 0.000 D/V	
# 6 41st Ave / Brommer St / Jade S	B 19.2 0.489	в 19.2 0.489	+ 0.000 D/V	
# 7 Clares St / Capitola Rd	B 13.8 0.480	в 13.8 0.480	+ 0.000 D/V	
# 8 Wharf Rd / Clares St	B 12.2 0.561	в 12.2 0.561	+ 0.000 V/C	
# 9 49th Ave / Capitola Rd	C 16.6 0.756	C 16.6 0.756	+ 0.000 V/C	
# 10 Wharf Rd / Cliff Dr / Stockton	C 22.6 0.846	C 22.6 0.846	+ 0.000 V/C	
# 11 Porter St / SR-1 NB Ramps	E 62.1 1.116	E 62.1 1.116	+ 0.000 D/V	
# 12 Bay Ave / SR-1 SB Ramps	C 21.6 0.775	C 21.6 0.775	+ 0.000 D/V	
# 13 Bay Ave / Hill St	C 17.4 0.597	C 17.4 0.597	+ 0.000 V/C	
# 14 Capitola Ave / Bay Ave	B 14.3 0.547	в 14.3 0.547	+ 0.000 V/C	
# 15 Monterey Ave / Bay Ave	B 10.3 0.405	в 10.3 0.405	+ 0.000 V/C	
# 16 Monterey Ave / Park Ave	D 29.8 0.942	D 29.8 0.942	+ 0.000 V/C	
# 17 Capitola Ave / Stockton Ave	D 27.9 0.918	D 27.9 0.918	+ 0.000 V/C	
# 18 Monterey Ave / Capitola Ave	в 13.9 0.653	в 13.9 0.653	+ 0.000 V/C	
# 19 Park Ave / SR-1 NB Ramps	C 29.8 0.902	C 29.8 0.902	+ 0.000 D/V	
# 20 Park Ave / SR-1 SB Ramps	C 20.4 0.629	C 20.4 0.629	+ 0.000 D/V	
# 21 Park Ave / Kennedy Dr	F 159.1 1.746	F 159.1 1.746	+ 0.000 V/C	

2035 AM Tue Oct 22, 2013 09:48:39 ______ ______ Level Of Service Computation Report 2000 HCM Operations Method (Base Volume Alternative) ****************** Intersection #1 41st Ave / SR-1 NB Ramps ************************* Cycle (sec): 90 Critical Vol./Cap.(X):
Loss Time (sec): 9 Average Delay (sec/veh):
Optimal Cycle: 39 Level Of Service: Critical Vol./Cap.(X): 0.580 **************************** Street Name: 41st Ave SR-1 NB Ramps
Approach: North Bound South Bound East Bound West Bound
Movement: L - T - R L - T - R L - T - R -----||-----||------| Volume Module: Base Vol: 0 553 292 0 587 183 0 0 0 1130 7 518 Initial Bse: 0 553 292 0 587 183 0 0 0 1130 7 518 PHF Volume: 0 582 0 0 618 0 0 0 1189 7 545
Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0
Reduced Vol: 0 582 0 0 618 0 0 0 1189 7 545 FinalVolume: 0 582 0 0 618 0 0 0 1189 7 545 -----||-----||-----| Saturation Flow Module: Final Sat.: 0 3610 1900 0 3610 0 0 0 3391 21 1615 -----|-----||-------| Capacity Analysis Module: Vol/Sat: 0.00 0.16 0.00 0.00 0.17 0.00 0.00 0.00 0.00 0.35 0.35 0.34 Crit Moves: **** Uniform Del: 0.0 26.7 0.0 0.0 27.0 0.0 0.0 0.0 0.0 10.8 10.8 10.6

Note: Queue reported is the number of cars per lane.

Traffix 8.0.0715 (c) 2008 Dowling Assoc. Licensed to RBF, MONTEREY BAY

2035 AM Tue Oct 22, 2013 09:48:39 ______ ______ Level Of Service Computation Report 2000 HCM Operations Method (Base Volume Alternative) ****************** Intersection #2 41st Ave / SR-1 SB Ramps ************************* Cycle (sec): 90
Loss Time (sec): 9
Optimal Cycle: 94 Critical Vol./Cap.(X): 0.891 Average Delay (sec/veh): Level Of Service: 17.9 Street Name:

41st Ave

SR-1 SB Ramps

Approach:

North Bound

South Bound

East Bound

West Bound

Movement:

L - T - R L - T - R -----||-----||------| Volume Module: Base Vol: 0 657 921 0 1549 200 207 1 618 0 0 Initial Bse: 0 657 921 0 1549 200 207 1 618 0 0 PHF Volume: 0 692 969 0 1631 0 218 1 651 0 0 0 Reduct Vol: 0 692 969 0 1631 0 218 1 651 0 0 0 0 Reduced Vol: 0 692 969 0 1631 0 218 1 651 0 0 FinalVolume: 0 692 969 0 1631 0 218 1 651 0 0 -----||-----||------| Saturation Flow Module: -----|----||------| Capacity Analysis Module: Vol/Sat: 0.00 0.19 0.60 0.00 0.31 0.00 0.13 0.20 0.20 0.00 0.00 0.00 **** Crit Moves: Green/Cycle: 0.00 0.67 0.67 0.00 0.67 0.00 0.23 0.23 0.23 0.00 0.00 0.00 Volume/Cap: 0.00 0.28 0.89 0.00 0.47 0.00 0.60 0.89 0.89 0.00 0.00 0.00 Uniform Del: 0.0 5.9 12.0 0.0 7.0 0.0 31.1 33.7 33.7 0.0 0.0 0.0 IncremntDel: 0.0 0.1 9.4 0.0 0.1 0.0 2.7 13.1 13.1 0.0 0.0 0.0

Note: Queue reported is the number of cars per lane.

Traffix 8.0.0715 (c) 2008 Dowling Assoc. Licensed to RBF, MONTEREY BAY

Tue Oct 22, 2013 09:48:39 ______ ______ Level Of Service Computation Report 2000 HCM Operations Method (Base Volume Alternative) ****************** Intersection #3 41st Ave / Gross Rd ************************* Critical Vol./Cap.(X): 0.690 Cycle (sec): 120 Loss Time (sec): 16
Optimal Cycle: 90 Average Delay (sec/veh): Level Of Service: 20.8 ************************ Street Name: 41st Ave Gross Rd

Approach: North Bound South Bound East Bound West Bound

Movement: L - T - R L - T - R L - T - R -----||-----||------| Volume Module: Base Vol: 76 1296 20 90 1665 410 267 7 81 20 10 42 Initial Bse: 76 1296 20 90 1665 410 267 7 81 20 10 42 PHF Volume: 82 1394 22 97 1790 441 287 8 87 22 11 45 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 Reduced Vol: 82 1394 22 97 1790 441 287 8 87 22 11 45 FinalVolume: 82 1394 22 97 1790 441 287 8 87 22 11 45 -----|----||------| Saturation Flow Module: Final Sat.: 1805 5098 79 1805 4037 994 3533 93 1615 1226 613 1615 -----|-----||-------| Capacity Analysis Module: Vol/Sat: 0.05 0.27 0.27 0.05 0.44 0.44 0.08 0.08 0.05 0.02 0.02 0.03 Crit Moves: **** **** Green/Cycle: 0.07 0.59 0.59 0.12 0.64 0.64 0.12 0.12 0.12 0.04 0.04 0.04 Volume/Cap: 0.69 0.46 0.46 0.46 0.69 0.69 0.69 0.69 0.46 0.43 0.43 0.69 Uniform Del: 54.9 13.7 13.7 49.5 13.8 13.8 50.8 50.8 49.4 56.2 56.2 56.8

Note: Queue reported is the number of cars per lane. *******************

Traffix 8.0.0715 (c) 2008 Dowling Assoc. Licensed to RBF, MONTEREY BAY

2035 AM Tue Oct 22, 2013 09:48:39 ______ ______ Level Of Service Computation Report 2000 HCM Operations Method (Base Volume Alternative) ****************** Intersection #4 41st Ave / Clares St ************************ Critical Vol./Cap.(X): 0.521 Cycle (sec): 100 Loss Time (sec): 16
Optimal Cycle: 51 Average Delay (sec/veh): Level Of Service: Street Name: 41st Ave Clares St

Approach: North Bound South Bound East Bound West Bound

Movement: L - T - R L - T - R L - T - R -----||-----||------| Volume Module: Base Vol: 35 872 26 141 1103 377 327 52 32 24 78 175 Initial Bse: 35 872 26 141 1103 377 327 52 32 24 78 175 PHF Volume: 37 918 27 148 1161 397 344 55 34 25 82 184 FinalVolume: 37 918 27 148 1161 397 344 55 34 25 82 184 -----|----||------| Saturation Flow Module: Final Sat.: 1805 5017 150 1805 5187 1615 4506 478 294 442 1436 1615 -----|-----||-------| Capacity Analysis Module: Vol/Sat: 0.02 0.18 0.18 0.08 0.22 0.25 0.08 0.11 0.11 0.06 0.06 0.11 Crit Moves: **** **** Green/Cycle: 0.04 0.35 0.35 0.16 0.47 0.47 0.22 0.22 0.22 0.11 0.11 0.27 Volume/Cap: 0.52 0.52 0.52 0.52 0.47 0.52 0.35 0.52 0.52 0.52 0.52 0.43 Uniform Del: 47.1 25.7 25.7 38.6 18.0 18.5 33.0 34.4 34.4 42.0 42.0 30.2

Note: Queue reported is the number of cars per lane.

Traffix 8.0.0715 (c) 2008 Dowling Assoc. Licensed to RBF, MONTEREY BAY

2035 AM Tue Oct 22, 2013 09:48:39 ______ ______ Level Of Service Computation Report 2000 HCM Operations Method (Base Volume Alternative) ****************** Intersection #5 41st Ave / Capitola Rd ************************* Cycle (sec): 65
Loss Time (sec): 12
Optimal Cycle: 44 Critical Vol./Cap.(X): 0.596 Average Delay (sec/veh): Level Of Service: Street Name: 41st Ave Capitola Rd
Approach: North Bound South Bound East Bound West Bound
Movement: L - T - R L - T - R L - T - R -----||-----||------| Volume Module: Base Vol: 69 476 60 165 568 184 203 180 43 119 437 100 Initial Bse: 69 476 60 165 568 184 203 180 43 119 437 100 PHF Volume: 73 501 63 174 598 194 214 189 45 125 460 105 FinalVolume: 73 501 63 174 598 194 214 189 45 125 460 105 -----|----||------| Saturation Flow Module: Final Sat.: 1805 3610 1615 3502 3610 1615 1805 2829 676 1748 2844 651 -----|-----||-------| Capacity Analysis Module: Vol/Sat: 0.04 0.14 0.04 0.05 0.17 0.12 0.12 0.07 0.07 0.07 0.16 0.16 Crit Moves: **** **** Green/Cycle: 0.07 0.25 0.25 0.09 0.28 0.28 0.20 0.20 0.20 0.27 0.27 0.27 Volume/Cap: 0.60 0.55 0.15 0.55 0.60 0.43 0.60 0.34 0.34 0.26 0.60 0.60 Uniform Del: 29.4 21.0 18.8 28.3 20.3 19.3 23.7 22.4 22.4 18.6 20.6 20.6

2035 AM Tue Oct 22, 2013 09:48:39 ______ ______ Level Of Service Computation Report 2000 HCM Operations Method (Base Volume Alternative) ****************** Intersection #6 41st Ave / Brommer St / Jade St ************************ Cycle (sec): 60 Critical Vol./Cap.(X): 0.489 Average Delay (sec/veh):
Level Of Service: Loss Time (sec): 12 Optimal Cycle: 37 **************************** Street Name:
41st Ave
Brommer St / Jade St
Approach:
North Bound
South Bound
East Bound
West Bound
Movement:
L - T - R L - T - R -----||-----||------| Volume Module: Base Vol: 30 421 41 98 419 57 121 95 45 60 72 96 Initial Bse: 30 421 41 98 419 57 121 95 45 60 72 96 PHF Volume: 32 443 43 103 441 60 127 100 47 63 76 101 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reduced Vol: 32 443 43 103 441 60 127 100 47 63 76 101 FinalVolume: 32 443 43 103 441 60 127 100 47 63 76 101 -----|----||------| Saturation Flow Module: Final Sat.: 1805 3247 316 1805 3121 425 1036 813 1615 845 1014 1615 -----|-----||-------| Capacity Analysis Module: Vol/Sat: 0.02 0.14 0.14 0.06 0.14 0.14 0.12 0.12 0.03 0.07 0.07 0.06 Crit Moves: **** **** **** Green/Cycle: 0.04 0.28 0.28 0.12 0.35 0.35 0.25 0.25 0.25 0.15 0.15 0.15 Uniform Del: 27.9 18.1 18.1 24.8 14.7 14.7 19.2 19.2 17.3 23.3 23.3 23.0

Traffix 8.0.0715 (c) 2008 Dowling Assoc. Licensed to RBF, MONTEREY BAY

______ ______ Level Of Service Computation Report 2000 HCM Operations Method (Base Volume Alternative) ****************** Intersection #7 Clares St / Capitola Rd ************************ Cycle (sec): 60
Loss Time (sec): 12
Optimal Cycle: 37 Critical Vol./Cap.(X): 0.480 Average Delay (sec/veh): Level Of Service: **************************** Street Name: Clares St Capitola Rd
Approach: North Bound South Bound East Bound West Bound
Movement: L - T - R L - T - R L - T - R -----|-----||-------| Volume Module: Base Vol: 0 0 0 37 0 167 172 458 0 0 540 51 Initial Bse: 0 0 0 37 0 167 172 458 0 0 540 51 PHF Volume: 0 0 0 39 0 176 181 482 0 0 568 54 FinalVolume: 0 0 0 39 0 176 181 482 0 0 568 54 -----|----||------| Saturation Flow Module: -----|-----||-------| Capacity Analysis Module: Vol/Sat: 0.00 0.00 0.00 0.02 0.00 0.11 0.10 0.13 0.00 0.00 0.17 0.17 Crit Moves: **** Green/Cycle: 0.00 0.00 0.00 0.23 0.00 0.23 0.21 0.57 0.00 0.00 0.36 0.36 Volume/Cap: 0.00 0.00 0.00 0.10 0.00 0.48 0.48 0.23 0.00 0.00 0.48 0.48 Uniform Del: 0.0 0.0 0.0 18.3 0.0 20.1 20.9 6.3 0.0 0.0 14.7 14.7 ************************* Note: Queue reported is the number of cars per lane.

2035 AM Tue Oct 22, 2013 09:48:39 ______ ______ Level Of Service Computation Report 2000 HCM 4-Way Stop Method (Base Volume Alternative) ****************** Intersection #8 Wharf Rd / Clares St ************************ Cycle (sec): 100 Critical Vol./Cap.(X):
Loss Time (sec): 0 Average Delay (sec/veh):
Optimal Cycle: 0 Level Of Service: Critical Vol./Cap.(X): 0.561 ************************ Street Name: Wharf Rd Clares St

Approach: North Bound South Bound East Bound West Bound

Movement: L - T - R L - T - R L - T - R -----||-----||------| -----| Volume Module: Base Vol: 48 285 0 0 257 158 111 0 38 0 0 Initial Bse: 48 285 0 0 257 158 111 0 38 0 0 PHF Volume: 51 300 0 0 271 166 117 0 40 0 0 0 Reduct Vol: 0 0 0 0 271 166 117 0 40 0 0 0 0 Reduced Vol: 51 300 0 0 271 166 117 0 40 0 0 0 FinalVolume: 51 300 0 0 271 166 117 0 40 0 0 Saturation Flow Module: -----||-----||-----| Capacity Analysis Module: Vol/Sat: 0.48 0.48 xxxx xxxx 0.56 0.56 0.26 xxxx 0.26 xxxx xxxx xxxx Crit Moves: **** Delay/Veh: 12.1 12.1 0.0 0.0 12.9 12.9 10.3 0.0 10.3 0.0 0.0 0.0 AdjDel/Veh: 12.1 12.1 0.0 0.0 12.9 12.9 10.3 0.0 10.3 0.0 0.0 0.0 LOS by Move: B B * * B B * * 12.9 ApproachDel: 12.1 10.3 XXXXXX Delay Adj: ApprAdjDel: 1.00 1.00 1.00 12.9 XXXXX ApprAdjDel: 12.1 12.9 10.3 xxxxxx LOS by Appr: B B B B * AllWayAvgQ: 0.9 0.9 0.9 1.2 1.2 1.2 0.3 0.3 0.3 0.0 0.0 10.3 ************************* Note: Queue reported is the number of cars per lane.

2035 AM Tue Oct 22, 2013 09:48:39 ______ ______ Level Of Service Computation Report 2000 HCM 4-Way Stop Method (Base Volume Alternative) ****************** Intersection #9 49th Ave / Capitola Rd ************************* Cycle (sec): 100 Critical Vol./Cap.(X):
Loss Time (sec): 0 Average Delay (sec/veh):
Optimal Cycle: 0 Level Of Service: Critical Vol./Cap.(X): 0.756 **************************** Street Name:

49th Ave

Capitola Rd

Approach:

North Bound

South Bound

East Bound

West Bound

Movement:

L - T - R L - T - R L - T - R -----||-----||------| -----| Volume Module: Base Vol: 22 56 30 45 55 160 171 163 18 20 392 Initial Bse: 22 56 30 45 55 160 171 163 18 20 392 15 PHF Volume: 23 59 32 47 58 168 180 172 19 21 413 16 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 0 Reduced Vol: 23 59 32 47 58 168 180 172 19 21 413 16 FinalVolume: 23 59 32 47 58 168 180 172 19 21 413 16 Saturation Flow Module: -----||-----||------| Capacity Analysis Module: Vol/Sat: 0.25 0.25 0.25 0.22 0.22 0.31 0.36 0.35 0.35 0.04 0.76 0.76 Crit Moves: **** **** **** Delay/Veh: 12.3 12.3 12.3 11.8 11.8 11.5 13.1 12.1 12.1 9.7 24.8 24.8 AdjDel/Veh: 12.3 12.3 12.3 11.8 11.8 11.5 13.1 12.1 12.1 9.7 24.8 24.8 LOS by Move: B B B B B B B A C C ApproachDel: 12.3 11.6 12.6 24.1 Delay Adj: ApprAdjDel: 1.00 1.00 1.00 1.00 11.6 ApprAdjDel: 12.3
LOS by Appr: B 12.6 24.1 В В C

Note: Queue reported is the number of cars per lane.

AllWayAvgQ: 0.3 0.3 0.3 0.2 0.2 0.4 0.5 0.5 0.5 0.0 2.5 2.5

2035 AM Tue Oct 22, 2013 09:48:39 ______ ______ Level Of Service Computation Report 2000 HCM 4-Way Stop Method (Base Volume Alternative) ****************** Intersection #10 Wharf Rd / Cliff Dr / Stockton Ave ************************ Cycle (sec): 100 Critical Vol./Cap.(X): 0.846 Loss Time (sec):

Optimal Cycle:

0

Average Delay (sec/veh):
Level Of Service: 22.6 C *************************** Street Name: Wharf Rd Cliff Dr / Stockton Ave
Approach: North Bound South Bound East Bound West Bound
Movement: L - T - R L - T - R L - T - R -----||-----||------| -----| Volume Module: Initial Bse: 5 8 8 220 5 18 20 330 0 10 478 467 PHF Volume: 5 8 8 232 5 19 21 347 0 11 503 0 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 Reduced Vol: 5 8 8 232 5 19 21 347 0 11 503 0 FinalVolume: 5 8 8 232 5 19 21 347 0 11 503 0 Saturation Flow Module: -----||-----||-----| Capacity Analysis Module: Vol/Sat: 0.05 0.05 0.05 0.48 0.48 0.48 0.60 0.60 xxxx 0.85 0.85 0.00 Crit Moves: **** **** **** Delay/Veh: 10.0 10.0 10.0 14.5 14.5 14.5 16.4 16.4 0.0 31.6 31.6 0.0 AdjDel/Veh: 10.0 10.0 10.0 14.5 14.5 14.5 16.4 16.4 0.0 31.6 31.6 0.0 LOS by Move: B B B B B C C * D D * ApproachDel: 10.0 14.5 16.4 31.6 Delay Adj: ApprAdjDel: 1.00 1.00 1.00 1.00 14.5 B ApprAdjDel: 10.0
LOS by Appr: B 16.4 31.6

Note: Queue reported is the number of cars per lane.

C

D

AllWayAvgO: 0.0 0.0 0.0 0.8 0.8 1.3 1.3 1.3 3.9 3.9 **************************

2035 AM Tue Oct 22, 2013 09:48:39 ______ ______ Level Of Service Computation Report 2000 HCM Operations Method (Base Volume Alternative) ****************** Intersection #11 Porter St / SR-1 NB Ramps ************************* Cycle (sec): 85 Critical Vol./Cap.(X):
Loss Time (sec): 9 Average Delay (sec/veh):
Optimal Cycle: 160 Level Of Service: Critical Vol./Cap.(X): 1.116 *************************** Street Name: Porter St SR-1 NB Ramps
Approach: North Bound South Bound East Bound West Bound
Movement: L - T - R L - T - R L - T - R -----||-----||------| Volume Module: Base Vol: 389 662 0 0 486 744 0 0 0 203 27 429 Initial Bse: 389 662 0 0 486 744 0 0 0 203 27 429 PHF Volume: $409 \ 697 \ 0 \ 0 \ 512 \ 783 \ 0 \ 0 \ 0 \ 214 \ 28 \ 452$ FinalVolume: 409 697 0 0 512 783 0 0 0 214 28 452 -----|----||------| Saturation Flow Module: Final Sat.: 1805 3610 0 0 1641 1641 0 0 0 1615 97 1535 -----|-----||-------| Capacity Analysis Module: Vol/Sat: 0.23 0.19 0.00 0.00 0.31 0.48 0.00 0.00 0.00 0.13 0.29 0.29 Crit Moves: **** **** Green/Cycle: 0.20 0.63 0.00 0.00 0.43 0.43 0.00 0.00 0.00 0.26 0.26 0.26 Volume/Cap: 1.12 0.31 0.00 0.00 0.73 1.12 0.00 0.00 0.00 0.50 1.12 1.12 Uniform Del: 33.9 7.2 0.0 0.0 20.2 24.3 0.0 0.0 0.0 26.6 31.3 31.3

Traffix 8.0.0715 (c) 2008 Dowling Assoc. Licensed to RBF, MONTEREY BAY

2035 AM Tue Oct 22, 2013 09:48:39 ______ ______ Level Of Service Computation Report 2000 HCM Operations Method (Base Volume Alternative) ****************** Intersection #12 Bay Ave / SR-1 SB Ramps ************************* Cycle (sec): 75
Loss Time (sec): 9
Optimal Cycle: 58 Critical Vol./Cap.(X): 0.775 Average Delay (sec/veh): Level Of Service: 21.6 *************************** Street Name: Bay Ave SR-1 SB Ramps
Approach: North Bound South Bound East Bound West Bound
Movement: L - T - R L - T - R L - T - R -----||-----||------| Volume Module: Base Vol: 0 728 286 267 427 0 332 6 328 0 0 Initial Bse: 0 728 286 267 427 0 332 6 328 0 0 0 FinalVolume: 0 766 301 281 449 0 349 6 345 0 0 0 -----||-----||------| Saturation Flow Module: Final Sat.: 0 2483 975 1805 3610 0 2431 29 2422 0 0 0 -----|-----||-------| Capacity Analysis Module: Vol/Sat: 0.00 0.31 0.31 0.16 0.12 0.00 0.14 0.22 0.14 0.00 0.00 0.00 Crit Moves: **** **** **** Green/Cycle: 0.00 0.40 0.40 0.20 0.60 0.00 0.28 0.28 0.28 0.00 0.00 0.00 Volume/Cap: 0.00 0.77 0.77 0.77 0.21 0.00 0.51 0.77 0.51 0.00 0.00 0.00 Uniform Del: 0.0 19.6 19.6 28.4 6.9 0.0 22.7 24.8 22.6 0.0 0.0 0.0

Note: Queue reported is the number of cars per lane.

Traffix 8.0.0715 (c) 2008 Dowling Assoc. Licensed to RBF, MONTEREY BAY

2035 AM Tue Oct 22, 2013 09:48:39 ______ ______ Level Of Service Computation Report 2000 HCM 4-Way Stop Method (Base Volume Alternative) ****************** Intersection #13 Bay Ave / Hill St ************************* Cycle (sec): 100 Critical Vol./Cap.(X):
Loss Time (sec): 0 Average Delay (sec/veh):
Optimal Cycle: 0 Level Of Service: Critical Vol./Cap.(X): 0.597 17.4 *************************** Street Name: Bay Ave Hill St

Approach: North Bound South Bound East Bound West Bound

Movement: L - T - R L - T - R L - T - R -----||-----||------|
 Control:
 Stop Sign
 Stop Sign
 Stop Sign
 Stop Sign

 Rights:
 Include
 Include
 Include
 Include

 Min. Green:
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0

 Lanes:
 1
 0
 1
 0
 1
 0
 0
 1
 0
 0
 1
 0
 0
 1
 0
 0
 1
 0
 0
 1
 0
 0
 1
 0
 0
 1
 0
 0
 1
 0
 0
 1
 0
 0
 1
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0 -----| Volume Module: Initial Bse: 72 534 9 105 460 45 72 15 43 7 35 143 PHF Volume: 76 562 9 111 484 47 76 16 45 7 37 151 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 0 Reduced Vol: 76 562 9 111 484 47 76 16 45 7 37 151 FinalVolume: 76 562 9 111 484 47 76 16 45 7 37 151 Saturation Flow Module: -----||-----||------| Capacity Analysis Module: Vol/Sat: 0.17 0.60 0.60 0.25 0.55 0.55 0.23 0.23 0.10 0.41 0.41 0.41 Crit Moves: **** *** **** Delay/Veh: 12.2 20.0 20.0 13.1 18.5 18.2 13.5 13.5 10.8 14.7 14.7 14.7 AdjDel/Veh: 12.2 20.0 20.0 13.1 18.5 18.2 13.5 13.5 10.8 14.7 14.7 14.7 LOS by Move: B C C B C C B B B B B ApproachDel: 19.1 17.5 12.6 14.7 Delay Adj: 1.00
ApprAdjDel: 19.1
LOS by Appr: C 1.00 1.00 1.00 17.5 12.6 14.7 LOS by Appr: C C C B B B AllWayAvgQ: 0.2 1.3 1.3 0.3 1.1 1.1 0.3 0.3 0.1 0.6 0.6

2035 AM Tue Oct 22, 2013 09:48:39 ______ ______ Level Of Service Computation Report 2000 HCM 4-Way Stop Method (Base Volume Alternative) ****************** Intersection #14 Capitola Ave / Bay Ave ************************ Cycle (sec): 100
Loss Time (sec): 0
Optimal Cycle: 0 Critical Vol./Cap.(X): 0.547 Average Delay (sec/veh): Level Of Service: ************************ Street Name: Capitola Ave Bay Ave
Approach: North Bound South Bound East Bound West Bound
Movement: L - T - R L - T - R L - T - R -----||-----||------|
 Control:
 Stop Sign
 Stop Sign
 Stop Sign
 Stop Sign

 Rights:
 Include
 Include
 Include
 Include

 Min. Green:
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0

 Lanes:
 0 1 0 0 1 0 0 1! 0 0 0 1! 0 0 1 0 0 1 0 0 1 0
 0 1 0 0 1 0 0 1 0
 -----| Volume Module: Base Vol: 124 131 6 35 92 30 57 188 158 42 204 Initial Bse: 124 131 6 35 92 30 57 188 158 42 204 34 PHF Volume: 131 138 6 37 97 32 60 198 166 44 215 36 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 Reduced Vol: 131 138 6 37 97 32 60 198 166 44 215 36 FinalVolume: 131 138 6 37 97 32 60 198 166 44 215 36 Saturation Flow Module: -----||-----||------| Capacity Analysis Module: Vol/Sat: 0.55 0.55 0.01 0.35 0.35 0.35 0.49 0.49 0.28 0.09 0.48 0.48 Crit Moves: **** **** **** Delay/Veh: 17.1 17.1 8.8 13.3 13.3 15.1 15.1 10.6 10.5 14.6 14.6 AdjDel/Veh: 17.1 17.1 8.8 13.3 13.3 13.3 15.1 15.1 10.6 10.5 14.6 14.6 LOS by Move: C C A B B B C C B B B B ApproachDel: 17.0 13.3 13.3 14.0 Delay Adj: ApprAdjDel: 1.00 1.00 1.00 1.00 13.3 13.3 ApprAdjDel: 17.0 13.3 13.3 14.0 LOS by Appr: C B B B B AllWayAvgQ: 1.0 1.0 0.0 0.4 0.4 0.4 0.8 0.8 0.3 0.1 0.8 ****************************

Note: Queue reported is the number of cars per lane.

2035 AM Tue Oct 22, 2013 09:48:39 ______ ______ Level Of Service Computation Report 2000 HCM 4-Way Stop Method (Base Volume Alternative) ****************** Intersection #15 Monterey Ave / Bay Ave ******************** Cycle (sec): 100
Loss Time (sec): 0
Optimal Cycle: 0 Critical Vol./Cap.(X): 0.405 Average Delay (sec/veh): Level Of Service: ************************ Street Name: Monterey Ave Bay Ave
Approach: North Bound South Bound East Bound West Bound
Movement: L - T - R L - T - R L - T - R -----||-----||------| -----| Volume Module: Base Vol: 146 50 0 0 125 136 113 0 166 0 0 Initial Bse: 146 50 0 0 125 136 113 0 166 0 0 PHF Volume: 154 53 0 0 132 143 119 0 175 0 0 0 Reduct Vol: 0 0 0 132 143 119 0 175 0 0 0 Reduced Vol: 154 53 0 0 132 143 119 0 175 0 0 0 FinalVolume: 154 53 0 0 132 143 119 0 175 0 0 Saturation Flow Module: -----||-----||-----| Capacity Analysis Module: Vol/Sat: 0.31 0.31 xxxx xxxx 0.36 0.36 0.41 xxxx 0.41 xxxx xxxx xxxx Crit Moves: **** Delay/Veh: 10.1 10.1 0.0 0.0 10.0 10.0 10.6 0.0 10.6 0.0 0.0 0.0 AdjDel/Veh: 10.1 10.1 0.0 0.0 10.0 10.0 10.6 0.0 10.6 0.0 0.0 0.0 LOS by Move: B B * * A A B * B * * ApproachDel: 10.1 10.0 10.6 XXXXXX Delay Adj: ApprAdjDel: 1.00 1.00 1.00 XXXXX 10.0 ApprAdjDel: 10.1
LOS by Appr: B 10.6 xxxxxx

Note: Queue reported is the number of cars per lane.

LOS by Appr: B A B * AllWayAvgQ: 0.4 0.4 0.4 0.5 0.5 0.5 0.6 0.6 0.6 0.0 0.0

______ ______ Level Of Service Computation Report 2000 HCM 4-Way Stop Method (Base Volume Alternative) ****************** Intersection #16 Monterey Ave / Park Ave ******************** Cycle (sec): 100 Critical Vol./Cap.(X): 0.942 Loss Time (sec): 0
Optimal Cycle: 0 Average Delay (sec/veh): Level Of Service: ************************ Street Name: Monterey Ave Park Ave

Approach: North Bound South Bound East Bound West Bound

Movement: L - T - R L - T - R L - T - R -----||-----||------| -----| Volume Module: Initial Bse: 12 140 266 143 162 8 12 6 30 449 6 55 PHF Volume: 13 147 280 151 171 8 13 6 32 473 6 58 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 0 Reduced Vol: 13 147 280 151 171 8 13 6 32 473 6 58 FinalVolume: 13 147 280 151 171 8 13 6 32 473 6 58 Saturation Flow Module: -----||-----||-----| Capacity Analysis Module: Vol/Sat: 0.33 0.33 0.51 0.67 0.67 0.02 0.11 0.11 0.11 0.94 0.94 0.94 Crit Moves: **** **** Delay/Veh: 13.1 13.1 15.3 23.0 23.0 9.2 11.0 11.0 11.0 48.4 48.4 48.4 AdjDel/Veh: 13.1 13.1 15.3 23.0 23.0 9.2 11.0 11.0 11.0 48.4 48.4 48.4 LOS by Move: B B C C C A B B E E E ApproachDel: 14.5 22.7 11.0 48.4 Delay Adj: ApprAdjDel: 1.00 1.00 1.00 1.00 22.7 ApprAdjDel: 14.5
LOS by Appr: B 11.0 48.4 LOS by Appr: B C B E AllWayAvgQ: 0.4 0.4 0.9 1.7 1.7 0.0 0.1 0.1 0.1 6.2 6.2 **************************** Note: Queue reported is the number of cars per lane.

2035 AM Tue Oct 22, 2013 09:48:39 ______ ______ Level Of Service Computation Report 2000 HCM 4-Way Stop Method (Base Volume Alternative) ****************** Intersection #17 Capitola Ave / Stockton Ave ************************* Cycle (sec): 100 Critical Vol./Cap.(X): 0.918 Average Delay (sec/veh): Level Of Service: Loss Time (sec): 0
Optimal Cycle: 0 *************************** Street Name: Capitola Ave Stockton Ave
Approach: North Bound South Bound East Bound West Bound
Movement: L - T - R L - T - R L - T - R -----||-----||------|
 Control:
 Stop Sign
 Stop Sign
 Stop Sign
 Stop Sign

 Rights:
 Include
 Include
 Include
 Include

 Min. Green:
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0

 Lanes:
 1
 0
 0
 1!
 0
 0
 0
 0
 0
 0
 0
 0
 0
 -----||-----||------| Volume Module: Base Vol: 203 0 373 15 39 20 0 29 320 406 65 Initial Bse: 203 0 373 15 39 20 0 29 320 406 65 0 PHF Volume: 214 0 393 16 41 21 0 31 337 427 68 0 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 Reduced Vol: 214 0 393 16 41 21 0 31 337 427 68 0 FinalVolume: 214 0 393 16 41 21 0 31 337 427 68 0 Saturation Flow Module: -----||-----||-----| Capacity Analysis Module: Vol/Sat: 0.46 xxxx 0.72 0.19 0.19 0.19 xxxx 0.66 0.66 0.92 0.92 xxxx Crit Moves: **** Delay/Veh: 16.6 0.0 23.2 12.4 12.4 12.4 0.0 19.4 19.4 45.2 45.2 0.0 AdjDel/Veh: 16.6 0.0 23.2 12.4 12.4 12.4 0.0 19.4 19.4 45.2 45.2 0.0 LOS by Move: C * C B B B * C C E E * ApproachDel: 20.9 19.4 12.4 45.2 Delay Adj: ApprAdjDel: 1.00 1.00 1.00 1.00 12.4 ApprAdjDel: 20.9 LOS by Appr: C 19.4 45.2 В C

Note: Queue reported is the number of cars per lane.

______ ______ Level Of Service Computation Report 2000 HCM 4-Way Stop Method (Base Volume Alternative) ****************** Intersection #18 Monterey Ave / Capitola Ave ************************* Cycle (sec): 100 Critical Vol./Cap.(X): 0.653 Average Delay (sec/veh):
Level Of Service: Loss Time (sec): 0
Optimal Cycle: 0 13.9 *************************** Street Name: Monterey Ave Capitola Ave
Approach: North Bound South Bound East Bound West Bound
Movement: L - T - R L - T - R L - T - R -----||-----||------| -----||-----||------| Volume Module: Base Vol: 72 83 0 0 0 486 309 0 0 Initial Bse: 72 83 0 0 0 486 309 0 0 0 0 FinalVolume: 76 87 0 0 512 325 0 0 0 0 Saturation Flow Module: -----||-----||-----| Capacity Analysis Module: Vol/Sat: 0.27 0.27 xxxx xxxx xxxx 0.65 0.53 xxxx xxxx xxxx xxxx xxxx Crit Moves: **** Delay/Veh: 10.4 10.4 0.0 0.0 0.0 14.9 14.1 0.0 0.0 0.0 0.0 0.0 AdjDel/Veh: 10.4 10.4 0.0 0.0 0.0 14.9 14.1 0.0 0.0 0.0 0.0 0.0 LOS by Move: B B * * * B B * * * * ApproachDel: 10.4 14.9 14.1 XXXXXX Delay Adj: ApprAdjDel: 1.00 1.00 1.00 XXXXX 14.9 ApprAdjDel: 10.4 LOS by Appr: B 14.1 xxxxxx В В AllWayAvqO: 0.3 0.3 0.3 1.6 1.6 1.6 0.9 0.9 0.9 0.0 0.0 **************************** Note: Queue reported is the number of cars per lane.

2035 AM Tue Oct 22, 2013 09:48:39 ______ ______ Level Of Service Computation Report 2000 HCM Operations Method (Base Volume Alternative) ****************** Intersection #19 Park Ave / SR-1 NB Ramps ******************** Cycle (sec): 80
Loss Time (sec): 9
Optimal Cycle: 93 Critical Vol./Cap.(X): 0.902 Average Delay (sec/veh): Level Of Service: C *************************** Street Name: Park Ave SR-1 NB Ramps
Approach: North Bound South Bound East Bound West Bound
Movement: L - T - R L - T - R L - T - R -----||-----||------| Volume Module: Base Vol: 310 997 0 0 361 436 0 0 0 330 248 307 Initial Bse: 310 997 0 0 361 436 0 0 0 330 248 307 PHF Volume: 326 1049 0 0 380 459 0 0 347 261 323 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reduced Vol: 326 1049 0 0 380 459 0 0 0 347 261 323 FinalVolume: 326 1049 0 0 380 459 0 0 347 261 323 -----||-----||------| Saturation Flow Module: Final Sat.: 1805 3610 0 0 1900 1615 0 0 0 1615 779 964 -----|-----||-------| Capacity Analysis Module: Vol/Sat: 0.18 0.29 0.00 0.00 0.20 0.28 0.00 0.00 0.00 0.22 0.34 0.34 Crit Moves: **** **** Green/Cycle: 0.20 0.52 0.00 0.00 0.32 0.32 0.00 0.00 0.00 0.37 0.37 0.37 Volume/Cap: 0.90 0.56 0.00 0.00 0.63 0.90 0.00 0.00 0.00 0.58 0.90 0.90 Uniform Del: 31.2 13.2 0.0 0.0 23.5 26.2 0.0 0.0 0.0 20.1 23.7 23.7

2035 AM Tue Oct 22, 2013 09:48:39 ______ ______ Level Of Service Computation Report 2000 HCM Operations Method (Base Volume Alternative) ****************** Intersection #20 Park Ave / SR-1 SB Ramps ******************** Cycle (sec): 75
Loss Time (sec): 9
Optimal Cycle: 42 Critical Vol./Cap.(X): 0.629 Average Delay (sec/veh): Level Of Service: *************************** Street Name: Park Ave SR-1 SB Ramps
Approach: North Bound South Bound East Bound West Bound
Movement: L - T - R L - T - R L - T - R -----||-----||------| Volume Module: Base Vol: 0 538 295 199 530 0 775 5 205 0 0 Initial Bse: 0 538 295 199 530 0 775 5 205 0 0 PHF Volume: 0 566 311 209 558 0 816 5 216 0 0 0 Reduct Vol: 0 0 566 311 209 558 0 816 5 216 0 0 0 Reduced Vol: 0 566 311 209 558 0 816 5 216 0 0 0 FinalVolume: 0 566 311 209 558 0 816 5 216 0 0 0 -----||-----||------| Saturation Flow Module: Final Sat.: 0 3610 1615 1805 1900 0 3330 21 1615 0 0 -----|-----||-------| Capacity Analysis Module: Vol/Sat: 0.00 0.16 0.19 0.12 0.29 0.00 0.24 0.24 0.13 0.00 0.00 0.00 **** **** **** Crit Moves: Green/Cycle: 0.00 0.31 0.31 0.18 0.49 0.00 0.39 0.39 0.39 0.00 0.00 0.00 Volume/Cap: 0.00 0.51 0.63 0.63 0.60 0.00 0.63 0.63 0.34 0.00 0.00 0.00 Uniform Del: 0.0 21.4 22.4 28.2 13.8 0.0 18.5 18.5 16.1 0.0 0.0 0.0

______ ______ Level Of Service Computation Report 2000 HCM 4-Way Stop Method (Base Volume Alternative) ****************** Intersection #21 Park Ave / Kennedy Dr ******************** Cycle (sec): 100 Critical Vol./Cap.(X):
Loss Time (sec): 0 Average Delay (sec/veh):
Optimal Cycle: 0 Level Of Service: Critical Vol./Cap.(X): 159.1 ************************ Street Name: Park Ave Kennedy Dr
Approach: North Bound South Bound East Bound West Bound
Movement: L - T - R L - T - R L - T - R -----||-----||------| -----||-----||------| Volume Module: Base Vol: 10 246 71 292 157 298 252 30 4 208 175 352 Initial Bse: 10 246 71 292 157 298 252 30 4 208 175 352 PHF Volume: 11 259 75 307 165 314 265 32 4 219 184 371 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 FinalVolume: 11 259 75 307 165 314 265 32 4 219 184 371 Saturation Flow Module: -----||-----||-----| Capacity Analysis Module: Vol/Sat: 0.81 0.81 0.81 1.75 1.75 1.75 0.76 0.76 0.76 0.98 0.98 0.80 Crit Moves: **** **** Delay/Veh: 38.0 38.0 38.0 364.3 364.3 364.3 34.1 34.1 34.1 69.4 69.4 35.1 AdjDel/Veh: 38.0 38.0 38.0 364.3 364.3 34.1 34.1 34.1 69.4 69.4 35.1 LOS by Move: E E E F F F D D F F E ApproachDel: 38.0 364.3 34.1 52.9 Delay Adj: 1.00 1.00 1.00 1.00 1.00 ApprAdjDel: 38.0 364.3 34.1 52.9 LOS by Appr: E F D F AllWayAvgQ: 3.1 3.1 3.1 44.2 44.2 44.2 2.4 2.4 2.4 6.6 6.6 1.00 ****************************

Note: Queue reported is the number of cars per lane.

2035 PM Tue Oct 22, 2013 09:48:45

Scenario Report

2035 PM Scenario:

Command:

Volume:

2035 PM

Geometry:

Impact Fee:

Trip Generation:

Trip Distribution:

Paths:

Routes:

Configuration:

Default Command

2035 PM

Default Geometry

Default Impact Fee

Default Trip Generation

Default Trip Distribution

Default Path

Default Route

Configuration:

Default Configuration

Impact Analysis Report Level Of Service

Intersection	Base Del/ V/	Future Del/ V/	Change in	
# 1 41st Ave / SR-1 NB Ramps	LOS Veh C C 20.4 0.683	LOS Veh C C 20.4 0.683	+ 0.000 D/V	
# 2 41st Ave / SR-1 SB Ramps	C 24.3 1.067	C 24.3 1.067	+ 0.000 D/V	
# 3 41st Ave / Gross Rd	C 28.5 0.731	C 28.5 0.731	+ 0.000 D/V	
# 4 41st Ave / Clares St	C 33.0 0.819	C 33.0 0.819	+ 0.000 D/V	
# 5 41st Ave / Capitola Rd	C 26.2 0.731	C 26.2 0.731	+ 0.000 D/V	
# 6 41st Ave / Brommer St / Jade S	C 23.8 0.716	C 23.8 0.716	+ 0.000 D/V	
# 7 Clares St / Capitola Rd	C 26.2 0.886	C 26.2 0.886	+ 0.000 D/V	
# 8 Wharf Rd / Clares St	C 24.6 0.851	C 24.6 0.851	+ 0.000 V/C	
# 9 49th Ave / Capitola Rd	C 24.8 0.847	C 24.8 0.847	+ 0.000 V/C	
# 10 Wharf Rd / Cliff Dr / Stockton	F 56.1 1.046	F 56.1 1.046	+ 0.000 V/C	
# 11 Porter St / SR-1 NB Ramps	D 43.0 0.975	D 43.0 0.975	+ 0.000 D/V	
# 12 Bay Ave / SR-1 SB Ramps	D 35.4 0.976	D 35.4 0.976	+ 0.000 D/V	
# 13 Bay Ave / Hill St	D 26.1 0.796	D 26.1 0.796	+ 0.000 V/C	
# 14 Capitola Ave / Bay Ave	D 26.3 0.842	D 26.3 0.842	+ 0.000 V/C	
# 15 Monterey Ave / Bay Ave	в 12.7 0.606	в 12.7 0.606	+ 0.000 V/C	
# 16 Monterey Ave / Park Ave	F 60.7 1.169	F 60.7 1.169	+ 0.000 V/C	
# 17 Capitola Ave / Stockton Ave	E 36.9 0.946	E 36.9 0.946	+ 0.000 V/C	
# 18 Monterey Ave / Capitola Ave	D 25.4 0.894	D 25.4 0.894	+ 0.000 V/C	
# 19 Park Ave / SR-1 NB Ramps	C 21.7 0.685	C 21.7 0.685	+ 0.000 D/V	
# 20 Park Ave / SR-1 SB Ramps	C 34.2 0.943	C 34.2 0.943	+ 0.000 D/V	
# 21 Park Ave / Kennedy Dr	F 225.9 1.706	F 225.9 1.706	+ 0.000 V/C	

2035 PM Tue Oct 22, 2013 09:48:46 ______ ______ Level Of Service Computation Report 2000 HCM Operations Method (Base Volume Alternative) ****************** Intersection #1 41st Ave / SR-1 NB Ramps ************************* Cycle (sec): 90
Loss Time (sec): 9
Optimal Cycle: 48 Critical Vol./Cap.(X): 0.683 Average Delay (sec/veh): Level Of Service: *************************** Street Name: 41st Ave SR-1 NB Ramps
Approach: North Bound South Bound East Bound West Bound
Movement: L - T - R L - T - R L - T - R -----||-----||------| Volume Module: Base Vol: 0 719 360 0 1012 266 0 0 0 1097 0 492 Initial Bse: 0 719 360 0 1012 266 0 0 0 1097 0 492 PHF Volume: 0 757 0 0 1065 0 0 0 1155 0 518
Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0
Reduced Vol: 0 757 0 0 1065 0 0 0 1155 0 518 FinalVolume: 0 757 0 0 1065 0 0 0 1155 0 518 -----||-----||-----| Saturation Flow Module: Final Sat.: 0 3610 1900 0 3610 0 0 0 3618 0 1615 -----|-----||-------| Capacity Analysis Module: Vol/Sat: 0.00 0.21 0.00 0.00 0.30 0.00 0.00 0.00 0.00 0.32 0.00 0.32 Crit Moves: **** Volume/Cap: 0.00 0.48 0.00 0.00 0.68 0.00 0.00 0.00 0.00 0.68 0.00 0.69 Uniform Del: 0.0 18.3 0.0 0.0 20.6 0.0 0.0 0.0 18.7 0.0 18.8

2035 PM Tue Oct 22, 2013 09:48:46 ______ ______ Level Of Service Computation Report 2000 HCM Operations Method (Base Volume Alternative) ****************** Intersection #2 41st Ave / SR-1 SB Ramps ************************* Cycle (sec): 90 Critical Vol./Cap.(X):
Loss Time (sec): 9 Average Delay (sec/veh):
Optimal Cycle: 160 Level Of Service: Critical Vol./Cap.(X): 1.067 *************************** Street Name: 41st Ave SR-1 SB Ramps
Approach: North Bound South Bound East Bound West Bound
Movement: L - T - R L - T - R L - T - R -----||-----||------| Volume Module: Base Vol: 0 1110 1374 0 1727 370 75 0 199 0 0 Initial Bse: 0 1110 1374 0 1727 370 75 0 199 0 0 FinalVolume: 0 1168 1446 0 1818 0 79 0 209 0 0 0 -----||-----||------| Saturation Flow Module: Final Sat.: 0 3610 1615 0 5187 1900 1461 0 3230 0 0 -----|----||------| Capacity Analysis Module: Vol/Sat: 0.00 0.32 0.90 0.00 0.35 0.00 0.05 0.00 0.06 0.00 0.00 0.00 **** Crit Moves: Green/Cycle: 0.00 0.84 0.84 0.00 0.84 0.00 0.06 0.00 0.06 0.00 0.00 0.00 Volume/Cap: 0.00 0.39 1.07 0.00 0.42 0.00 0.89 0.00 1.07 0.00 0.00 0.00 Uniform Del: $0.0 \ 1.7 \ 7.2 \ 0.0 \ 1.8 \ 0.0 \ 42.0 \ 0.0 \ 42.3 \ 0.0 \ 0.0$

Traffix 8.0.0715 (c) 2008 Dowling Assoc. Licensed to RBF, MONTEREY BAY

Note: Queue reported is the number of cars per lane.

Level Of Service Computation Report

2000 HCM Operations Method (Base Volume Alternative) ****************** Intersection #3 41st Ave / Gross Rd ************************* Cycle (sec): 120 Critical Vol./Cap.(X): 0.731 Loss Time (sec): 16
Optimal Cycle: 90 Average Delay (sec/veh): Level Of Service: ************************ Street Name:
41st Ave
Gross Rd
Approach: North Bound South Bound East Bound West Bound
Movement: L - T - R L - T - R L - T - R -----||-----||------| Volume Module: 49 20 90 Base Vol: 85 1977 31 49 1599 283 443 21 200 Initial Bse: 85 1977 31 49 1599 283 443 21 200 49 20 90 PHF Volume: 89 2081 33 52 1683 298 466 22 211 52 21 95 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 Reduced Vol: 89 2081 33 52 1683 298 466 22 211 52 21 95 FinalVolume: 89 2081 33 52 1683 298 466 22 211 52 21 95 -----|----||------| Saturation Flow Module: Final Sat.: 1805 5097 80 1805 4310 763 3461 164 1615 1303 532 1615 -----|-----||-------| Capacity Analysis Module: Vol/Sat: 0.05 0.41 0.41 0.03 0.39 0.39 0.13 0.13 0.13 0.04 0.04 0.06 Crit Moves: **** **** Green/Cycle: 0.07 0.56 0.56 0.04 0.53 0.53 0.18 0.18 0.18 0.08 0.08 0.08 Uniform Del: 54.9 19.4 19.4 57.0 21.4 21.4 46.1 46.1 45.9 52.8 52.8 53.9

Note: Queue reported is the number of cars per lane.

Traffix 8.0.0715 (c) 2008 Dowling Assoc. Licensed to RBF, MONTEREY BAY
Tue Oct 22, 2013 09:48:46 Page 2035 PM Page 6-1

2033 FM					,						rage			
Level Of Service Computation Report														
	2000 HCM Operations Method (Base Volume Alternative)													
*****	**************************************													
Intersection #4 41st Ave / Clares St														
*****						*****	****	****	*****	*****	****	*****		
Cycle (sec): Loss Time (se Optimal Cycle	ag):		16			Aversa	ar vo. a Dal:	1./Car	oc/wah)	•	0.0	3 U		
Ontimal Cycle	_: _:		91			T.evel	Of Sa	rvice:	•	•	٥.	. c		
*******	* * * * * *	* * * * *	ノエ * * * * * * *	****	****	*****	****	*****	*****	*****	****	· * * * * * *		
Street Name: Approach:	No	rth B	nind	501	uth B	ound	F:	act Bo	ound	TWI	act Ro	ound		
Movement:	T	- Т	_ P	т	исп D(_ Т	- P	Т	дас D(- Т	- P	T	- Т	- P		
Control:	I D-	rotect	l bat	I D-	rotect	l bet	Sn.	li+ Dł	l nade	I Sn	li+ Dl	1 1200		
Control: Rights:	F.	Incl	ıde	F.	Incl	1de	DP.	Incli	1dsc	DP.	Ozz]	iasc		
Min. Green:	Λ	0	n	Λ	0	n	Λ	0	n	Λ	0 4 1	0		
V+R:	4 0	4 0	4 0	4 0	4 0	4 0	4 0	4 0	4 0	4 0	4 0	4 0		
Y+R: Lanes:	1 1	n 2	1 0	1 1	n 3	0 1	2 (1.0	0 0	0	1 0	0 1		
Taluma Madul	l			1					I	l		I		
Volume Module	। ≏:		ı	ı		Į	1		Į	ļ		1		
Base Vol:			64	168	1064	511	541	122	50	44	113	149		
Growth Adj:				1.00					1.00		1.00	1.00		
Initial Bse:				168			541			44		149		
User Adj:					1.00		1.00							
PHF Adj:	0.95	0.95	0.95			0.95	0.95							
PHF Volume:				177			569					157		
Reduct Vol:	, ,	1117	0,						0	0	117			
Reduct Vol: Reduced Vol:	77	1447	67	177	1120	538	569	128	0 53	46	119	157		
PCE Adj:					1.00			1.00				1.00		
MLF Adj:				1.00			1.00					1.00		
FinalVolume:										46		157		
	l													
Saturation F				1		Į	1			ļ		'		
Sat/Lane:				1900	1900	1900	1900	1900	1900	1900	1900	1900		
Adjustment:									0.95					
Lanes:									0.14			1.00		
Final Sat.:									253					
Capacity Ana						'				'				
Vol/Sat:	0.04	0.29	0.29	0.10	0.22	0.33	0.13	0.21	0.21	0.09	0.09	0.10		
Crit Moves:		****		****				***			***			
Green/Cycle:						0.42	0.25	0.25	0.25	0.11	0.11	0.23		
Volume/Cap:		0.82	0.82		0.51	0.79		0.82	0.82		0.82	0.43		
Uniform Del:			29.1		21.1	24.9		35.1	35.1		43.7	33.1		
IncremntDel:	33.0	3.0	3.0	21.3	0.2	6.0	0.3	5.9	5.9	22.5	22.5	0.8		
InitQueuDel:	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
Delay Adj:		1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00		
Delay/Veh:		32.1	32.1		21.3	30.8		41.1	41.1		66.2	33.9		
User DelAdj:			1.00		1.00	1.00		1.00	1.00		1.00	1.00		
AdjDel/Veh:		32.1	32.1		21.3	30.8		41.1	41.1		66.2	33.9		
LOS by Move:	E	С	С	E	С	С	С	D	D	Е	Е	С		
HCM2kAvqQ:	2	15	15	5	9	14	7	13	13	7	7	4		
*****	****			****			****			****	****			

Note: Queue reported is the number of cars per lane.

Traffix 8.0.0715 (c) 2008 Dowling Assoc. Licensed to RBF, MONTEREY BAY
Tue Oct 22, 2013 09:48:46 Page 2035 PM Page 7-1

2035 PM	Tue Oct 22, 2013 09:48:46 Page 7-1										
				_	ation Repor						
					Volume Alt						
******					*****	*****	* * * * * * * * * * *	*****			
Intersection ******						++++++		. + + + + +			
						>					
Cycle (sec): Loss Time (se	ec):	12		Avera	re Delav (g	p.(A). ec/weh)	: 26	5 2			
Optimal Cycle				Level	Of Service		. 20	<u> </u>			
*****							*****	-			
Street Name:		41s	t Ave			Capito?	la Rd				
Approach:	Nortl	h Bound	South	Bound	East B	ound	West Bo	ound			
Movement:	L -	T - R	L - '	Г – R	L - T	- R	L - T				
Control:											
Rights:		nclude		clude		ude					
Min. Green:		0 0	0	0 0	0 0 4.0 4.0	4 0	0 0	0			
Y+R: Lanes:		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$									
Lanes.											
Volume Module			1.1		1 1	I	I				
Base Vol:	140	648 123	208 5	92 96	353 321	85	186 306	137			
Growth Adj:							1.00 1.00	1.00			
Initial Bse:				92 96	353 321		186 306	137			
User Adj:	1.00 1	.00 1.00	1.00 1.	00 1.00	1.00 1.00	1.00	1.00 1.00	1.00			
PHF Adj:	0.95 0	.95 0.95	0.95 0.	95 0.95	0.95 0.95	0.95	0.95 0.95	0.95			
PHF Volume:	147	682 129	219 6	23 101	372 338		196 322	144			
		0 0	0		0 0		0 0	0			
Reduced Vol:		682 129		23 101			196 322	144			
PCE Adj: MLF Adj:							1.00 1.00	1.00			
MLF Adj: FinalVolume:				00 1.00 23 101	1.00 1.00 372 338		1.00 1.00 196 322	1.00			
Saturation Fi	1		1.1		1 1	I	I				
Sat/Lane:			1900 19	00 1900	1900 1900	1900	1900 1900	1900			
Adjustment:							0.90 0.90				
Lanes:	1.00 2	.00 1.00					1.00 1.38				
Final Sat.:				10 1615							
Capacity Ana			0.06.0	15 0 06	0 01 0 10	0 10	0 11 0 14	0 14			
Vol/Sat:		.19 0.08	0.06 0.		0.21 0.12	0.12	0.11 0.14	0.14			
Crit Moves:		26 0 26				0 00	0 10 0 10				
Green/Cycle:					0.28 0.28 0.73 0.43						
Volume/Cap: Uniform Del:	0.73 0		0.72 0. 28.9 22		21.1 19.1		0.61 0.73 24.3 24.9	0.73 24.9			
IncremntDel:		2.8 0.4		.2 0.4	5.4 0.3	0.3	1.1 3.1	3.1			
InitOueuDel:		0.0 0.0		.0 0.0	0.0 0.0	0.0	0.0 0.0	0.0			
Delay Adj:	1.00 1		1.00 1.		1.00 1.00	1.00	1.00 1.00	1.00			
Delay/Veh:	40.7 2		37.2 26		26.5 19.4		25.4 28.0	28.0			
User DelAdj:	1.00 1	.00 1.00	1.00 1.	00 1.00	1.00 1.00	1.00	1.00 1.00	1.00			
AdjDel/Veh:	40.7 2	4.6 19.7	37.2 26	.2 20.6	26.5 19.4	19.4	25.4 28.0	28.0			
LOS by Move:	D	СВ	D	C C	СВ		C C	С			
HCM2kAvgQ:	3	7 2	2	6 2	7 4	4	5 6	6			
*****	*****	******	*****	*****	******	*****	******	*****			

Note: Queue reported is the number of cars per lane.

Traffix 8.0.0715 (c) 2008 Dowling Assoc. Licensed to RBF, MONTEREY BAY 2035 PM Tue Oct 22, 2013 09:48:46 Page 8-1 Level Of Service Computation Report 2000 HCM Operations Method (Base Volume Alternative) ****************** Intersection #6 41st Ave / Brommer St / Jade St ************************ Cycle (sec): 60
Loss Time (sec): 12
Optimal Cycle: 53 Critical Vol./Cap.(X): 0.716 Average Delay (sec/veh):
Level Of Service: 23.8 C ************************* Street Name: 41st Ave Brommer St / Jade St Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R -----| Volume Module: Base Vol: 59 562 87 74 613 120 197 182 72 78 106 127 Initial Bse: 59 562 87 74 613 120 197 182 72 78 106 127

Note: Queue reported is the number of cars per lane.

Traffix 8.0.0715 (c) 2008 Dowling Assoc. Licensed to RBF, MONTEREY BAY 2035 PM Tue Oct 22, 2013 09:48:47 Page 9-1 Level Of Service Computation Report 2000 HCM Operations Method (Base Volume Alternative) ****************** Intersection #7 Clares St / Capitola Rd ************************* Cycle (sec): 60 Critical Vol./Cap.(X):
Loss Time (sec): 12 Average Delay (sec/veh):
Optimal Cycle: 78 Level Of Service: Critical Vol./Cap.(X): 0.886 ************************ Street Name: Clares St Capitola Rd

Approach: North Bound South Bound East Bound West Bound

Movement: L - T - R L - T - R L - T - R -----| Volume Module: Base Vol: 0 0 0 164 0 474 328 979 0 0 586 111 Initial Bse: 0 0 0 164 0 474 328 979 0 0 586 111

Note: Queue reported is the number of cars per lane.

Traffix 8.0.0715 (c) 2008 Dowling Assoc. Licensed to RBF, MONTEREY BAY 2035 PM Tue Oct 22, 2013 09:48:47 Page 10-1 Level Of Service Computation Report 2000 HCM 4-Way Stop Method (Base Volume Alternative) ****************** Intersection #8 Wharf Rd / Clares St ************************ Critical Vol./Cap.(X): 0.851 Cycle (sec): 100 Loss Time (sec): 0 Average Delay (sec/veh):
Optimal Cycle: 0 Level Of Service: ************************* Street Name: Wharf Rd Clares St

Approach: North Bound South Bound East Bound West Bound

Movement: L - T - R L - T - R L - T - R -----||-----||-----| -----||-----||------| Volume Module: Base Vol: 40 490 0 0 298 166 279 0 57 0 0 Initial Bse: 40 490 0 0 298 166 279 0 57 0 0 PHF Volume: 40 490 0 0 298 166 279 0 57 0 0 0 Reduct Vol: 0 0 0 0 298 166 279 0 57 0 0 0 Reduced Vol: 40 490 0 0 298 166 279 0 57 0 0 Saturation Flow Module: -----|-----||-------| Capacity Analysis Module: Vol/Sat: 0.85 0.85 xxxx xxxx 0.74 0.74 0.62 xxxx 0.62 xxxx xxxx xxxx Crit Moves: **** **** Delay/Veh: 31.5 31.5 0.0 0.0 21.7 21.7 18.0 0.0 18.0 0.0 0.0 AdjDel/Veh: 31.5 31.5 0.0 0.0 21.7 21.7 18.0 0.0 18.0 0.0 0.0 0.0 * C C C * C 21.7 18.0 LOS by Move: D D * * * Approached
Delay Adj: 1.00
ApprAdjDel: 31.5
D ApproachDel: 31.5 xxxxxx 1.00 1.00 xxxxx 21.7 18.0 xxxxxx

******************* Note: Queue reported is the number of cars per lane. *******************

AllWayAvgQ: 3.9 3.9 3.9 2.3 2.3 1.3 1.3 0.0 0.0

Traffix 8.0.0715 (c) 2008 Dowling Assoc. Licensed to RBF, MONTEREY BAY Tue Oct 22, 2013 09:48:47 Page 11-1

______ Level Of Service Computation Report 2000 HCM 4-Way Stop Method (Base Volume Alternative) **************************** Intersection #9 49th Ave / Capitola Rd ********************* Cycle (sec): 100 Critical Vol./Cap.(X): Loss Time (sec): 0 Optimal Cycle: 0 Average Delay (sec/veh): Level Of Service: 24.8 ************************* Street Name: 49th Ave Capitola Rd Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R Control: Stop Sign Stop Sign Stop Sign Rights: Include Include Include Include -----||-----||------| Volume Module: Base Vol: 12 61 28 67 75 206 389 435 17 18 249 18 Initial Bse: 12 61 28 67 75 206 389 435 17 18 249 18 PHF Volume: 12 63 29 69 77 212 401 448 18 19 257 19 -----||-----||-----| Saturation Flow Module: Lanes: 0.12 0.60 0.28 0.47 0.53 1.00 1.00 0.96 0.04 1.00 0.93 0.07 Final Sat.: 52 264 121 212 237 510 509 529 21 444 451 33 -----|-----||-------| Capacity Analysis Module: Vol/Sat: 0.24 0.24 0.24 0.33 0.33 0.42 0.79 0.85 0.85 0.04 0.57 0.57 Crit Moves: **** **** Delay/Veh: 13.1 13.1 13.1 14.0 14.0 14.0 30.8 34.9 34.9 10.8 18.6 18.6 AdjDel/Veh: 13.1 13.1 13.1 14.0 14.0 14.0 30.8 34.9 34.9 10.8 18.6 18.6 LOS by Move: B B B B B D D D B C C 13.1 ApproachDel: 14.0 33.0 18.1 Delay Adj: ApprAdjDel: 1.00 1.00 1.00 1.00 13.1 14.0 33.0 18.1 LOS by Appr: В D AllWayAvgQ: 0.3 0.3 0.3 0.4 0.4 0.6 3.0 3.9 3.9 0.0 1.2 *******************

Note: Queue reported is the number of cars per lane.

Traffix 8.0.0715 (c) 2008 Dowling Assoc. Licensed to RBF, MONTEREY BAY 2035 PM Tue Oct 22, 2013 09:48:47 Page 12-1 Level Of Service Computation Report 2000 HCM 4-Way Stop Method (Base Volume Alternative) ************************ Intersection #10 Wharf Rd / Cliff Dr / Stockton Ave *********************** Cycle (sec): 100 Critical Vol./Cap.(X): 1.046 Average Delay (sec/veh):
Level Of Service: Loss Time (sec): 0
Optimal Cycle: 0 Street Name: Wharf Rd Cliff Dr / Stockton Ave
Approach: North Bound South Bound East Bound West Bound
Movement: L - T - R L - T - R L - T - R -----||-----||------|
 Control:
 Stop Sign
 Rights:
 Include
 Include
 Include
 Ignore

 Min. Green:
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 -----| Volume Module: Base Vol: 3 5 9 464 15 12 18 546 0 10 378 303 Initial Bse: 3 5 9 464 15 12 18 546 0 10 378 303

-----||-----||------| Saturation Flow Module:

Lanes: 0.18 0.29 0.53 0.95 0.03 0.02 0.03 0.97 0.00 0.03 0.97 1.00 Final Sat.: 72 120 215 493 16 13 17 522 0 12 470 534 -----||-----||------|

Capacity Analysis Module: Vol/Sat: 0.04 0.04 0.04 0.94 0.94 0.94 1.05 1.05 xxxx 0.80 0.80 0.00 Crit Moves: **** **** Delay/Veh: 11.6 11.6 11.6 51.6 51.6 51.6 77.2 77.2 0.0 33.0 33.0 LOS by Move: B B B F F F F * D D 11.6 77.2 ApproachDel: 51.6 33.0 1.00 1.00 1.00 ApprAdjDel: Delay Adj: 1.00 77.2 33.0

51.6 F ApprAdjDel: 11.6 LOS by Appr: B F AllWayAvgQ: 0.0 0.0 0.0 6.0 6.0 10.1 10.1 10.1 3.1 3.1 Note: Queue reported is the number of cars per lane.

Traffix 8.0.0715 (c) 2008 Dowling Assoc. Licensed to RBF, MONTEREY BAY 2035 PM Tue Oct 22, 2013 09:48:47 Page 13-1

Cycle (sec):	******	Level Of Service Computation Report 2000 HCM Operations Method (Base Volume Alternative) ***********************************												
Street Name: North Bound South Bound Movement: L - T - R	Intersection #11 Porter St / SR-1 NB Ramps													
Street Name: North Bound South Bound Movement: L - T - R	Cycle (sec):		8	35			Critic	al Vo	l./Car	o.(X):		0.9	75	
Street Name: North Bound South Bound Movement: L - T - R	Loss Time (se	ec):		9			Averag	e Dela	ay (se	c/veh)	:	43	3.0	
Street Name: North Bound South Bound Movement: L - T - R	Optimal Cycle	:	14	15			Level	Of Se	rvice:				D	
Control: Protected Protected Protected Protected Rights: Include Inclu	*****	***	****	*****	****	*****	*****	****	*****	*****	****	*****	*****	
Control: Protected Protected Protected Protected Rights: Include Inclu	Street Name:			Porte	r St				S	SR-1 NB	Ramps	3		
Control: Protected Protected Protected Protected Rights: Include Inclu	Approach:	No	rth Bo	ound	Sou	ath Bo	ound	E	ast Bo	und	We	est Bo	ound	
Control: Protected Protected Protected Protected Rights: Include Inclu	Movement:	L ·	- T	- R	L -	- T	- R	L	- T	- R	L ·	- T	- R	
Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0														
Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Control:	P	rotect	ted	Pi	rotect	ted	:	Permit	ted]	Permit	ted	
YHR:	Rights:		Incl	ıde		Inclu	ıde		Inclu	ıde		Inclu	ıde	
Volume Module: Base Vol: 337 505 0 0 851 483 0 0 0 227 13 465 Growth Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	Min. Green:	0	0	0	0	0	0	0	0	0	0	0		
Volume Module: Base Vol: 337 505 0 0 851 483 0 0 0 227 13 465 Growth Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	Y+R:	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	
Volume Module: Base Vol: 337 505 0 0 851 483 0 0 0 227 13 465 Growth Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	Lanes:	1 (0 2	0 0	0 () 1	1 0	0	0 0	0 0	1 (0 C	1 0	
Volume Module: Base Vol: 337 505 0 0 851 483 0 0 0 0 227 13 465 Growth Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0														
Growth Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	Volume Module	:												
Initial Bse: 337 505 0 0 851 483 0 0 0 1.00 1.00 1.00 1.00 1.00 1.00 1.														
User Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0														
PHF Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0												13	465	
PHF Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	User Adj:	1.00	1.00	1.00				1.00	1.00	1.00	1.00	1.00	1.00	
Reduced Vol: 0 0 0 0 0 851 483 0 0 0 0 227 13 465 PCE Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	PHF Adj:	1.00	1.00	1.00			1.00						1.00	
Reduced Vol: 337 505 0 0 851 483 0 0 0 227 13 465 PCE Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0														
PCE Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0				0	0	0	0	0	0	0	0	0	0	
MLF Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0														
FinalVolume: 337 505 0 0 851 483 0 0 0 227 13 465	-													
Saturation Flow Module: Sat/Lane: 1900 1900 1900 1900 1900 1900 1900 190														
Saturation Flow Module: Sat/Lane: 1900 1900 1900 1900 1900 1900 1900 190														
Sat/Lane: 1900 1900 1900 1900 1900 1900 1900 190														
Adjustment: 0.95 0.95 1.00 1.00 0.90 0.90 1.00 1.00 1.00 0.85 0.85 0.85 Lanes: 1.00 2.00 0.00 0.00 1.28 0.72 0.00 0.00 0.00 1.00 0.03 0.97 Final Sat.: 1805 3610 0 0 2179 1236 0 0 0 1615 44 1578														
Lanes: 1.00 2.00 0.00 0.00 1.28 0.72 0.00 0.00 0.00 1.00 0.03 0.97 Final Sat.: 1805 3610 0 0 2179 1236 0 0 0 1615 44 1578														
Final Sat.: 1805 3610 0 0 2179 1236 0 0 0 1615 44 1578														
Capacity Analysis Module: Vol/Sat: 0.19 0.14 0.00 0.00 0.39 0.39 0.00 0.00 0.00 0.14 0.29 0.29 Crit Moves: **** Green/Cycle: 0.19 0.59 0.00 0.00 0.40 0.40 0.00 0.00 0.00 0.30 0.3														
Capacity Analysis Module: Vol/Sat:	Final Sat.:	1805	361U	0	. 0	21/9	1236	0	Ü	0	1015	44	15/8	
Vol/Sat: 0.19 0.14 0.00 0.00 0.39 0.39 0.00 0.00 0.00 0.14 0.29 0.29 Crit Moves: **** Green/Cycle: 0.19 0.59 0.00 0.00 0.40 0.40 0.00 0.00 0.00 0.0	Conodition 35:3													
Crit Moves: **** Green/Cycle: 0.19 0.59 0.00 0.00 0.40 0.40 0.00 0.00 0.00 0.30 0.3						0 20	0 20	0 00	0 00	0 00	0 14	0 20	0 20	
Green/Cycle: 0.19 0.59 0.00 0.00 0.40 0.40 0.00 0.00 0.00 0.30 0.3				0.00	0.00		0.39	0.00	0.00	0.00	0.14		0.29	
Volume/Cap: 0.98 0.24 0.00 0.00 0.98 0.98 0.00 0.00 0.00 0.47 0.98 0.98 Uniform Del: 34.2 8.2 0.0 0.0 25.1 25.1 0.0 0.0 0.0 24.1 29.3 29.3 IncremntDel: 41.6 0.1 0.0 0.0 18.6 18.6 0.0 0.0 0.0 0.0 0.7 34.1 34.1 InitQueuDel: 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.				0 00	0 00		0 40	0 00	0 00	0 00	0 30		0 30	
Uniform Del: 34.2 8.2 0.0 0.0 25.1 25.1 0.0 0.0 0.0 24.1 29.3 29.3 IncremntDel: 41.6 0.1 0.0 0.0 18.6 18.6 0.0 0.0 0.0 0.0 0.7 34.1 34.1 InitQueuDel: 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.														
IncremntDel: 41.6 0.1 0.0 0.0 18.6 18.6 0.0 0.0 0.0 0.7 34.1 34.1 InitQueuDel: 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	_													
InitQueuDel: 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.														
Delay Adj: 1.00 1.00 0.00 0.00 1.00 1.00 0.00 0.0														
Delay/Veh: 75.8 8.3 0.0 0.0 43.7 43.7 0.0 0.0 0.0 24.8 63.5 63.5 User DelAdj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0														
User DelAdj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0														
AdjDel/Veh: 75.8 8.3 0.0 0.0 43.7 43.7 0.0 0.0 0.0 24.8 63.5 63.5 LOS by Move: E A A A D D A A A C E E HCM2kAvgQ: 9 3 0 0 25 25 0 0 0 5 18 18 *******************************	-													
LOS by Move: E A A A D D A A A C E E HCM2kAvgQ: 9 3 0 0 25 25 0 0 0 5 18 18 *******************************	_													
HCM2kAvgQ: 9 3 0 0 25 25 0 0 0 5 18 18 *******************************	_													
**************************************	-													
Note: Queue reported is the number of cars per lane.	J ~													
		_					_							

Traffix 8.0.0715 (c) 2008 Dowling Assoc. Licensed to RBF, MONTEREY BAY
2035 PM Tue Oct 22, 2013 09:48:47 Page 14-1

Level Of Service Computation Report 2000 HCM Operations Method (Base Volume Alternative)

****************** Intersection #12 Bay Ave / SR-1 SB Ramps ************************* Critical Vol./Cap.(x).
Average Delay (sec/veh):
Level Of Service: Cycle (sec): 75
Loss Time (sec): 9
Optimal Cycle: 131 Critical Vol./Cap.(X): 0.976 ************************* Street Name: Bay Ave SR-1 SB Ramps
Approach: North Bound South Bound East Bound West Bound
Movement: L - T - R L - T - R L - T - R -----| Volume Module: Base Vol: 0 604 390 484 594 0 252 57 499 0 0 Initial Bse: 0 604 390 484 594 0 252 57 499 0 0 -----||-----||-----| Saturation Flow Module: Adjustment: 1.00 0.89 0.89 0.95 0.95 1.00 0.86 0.86 0.86 1.00 1.00 1.00 Lanes: 0.00 1.22 0.78 1.00 2.00 0.00 1.29 0.13 1.58 0.00 0.00 0.00 Final Sat.: 0 2064 1333 1805 3610 0 2121 216 2590 0 0 -----| Capacity Analysis Module: Vol/Sat: 0.00 0.30 0.30 0.28 0.17 0.00 0.12 0.27 0.20 0.00 0.00 0.00 *** Crit Moves: **** Green/Cycle: 0.00 0.31 0.31 0.29 0.60 0.00 0.28 0.28 0.28 0.00 0.00 0.00 AdjDel/Veh: 0.0 47.3 47.3 59.7 7.4 0.0 22.3 51.4 26.3 0.0 0.0 0.0 LOS by Move: A D D E A A C D C A A HCM2kAvgQ: 0 19 19 12 3 0 4 16 8 0 0

Note: Queue reported is the number of cars per lane.

Traffix 8.0.0715 (c) 2008 Dowling Assoc. Licensed to RBF, MONTEREY BAY 2035 PM Tue Oct 22, 2013 09:48:47 Page 15-1 Level Of Service Computation Report 2000 HCM 4-Way Stop Method (Base Volume Alternative) ****************** Intersection #13 Bay Ave / Hill St ************************* Cycle (sec): 100 Critical Vol./Cap.(X): 0.796 0 Average Delay (sec/veh):
0 Level Of Service: Loss Time (sec): 0
Optimal Cycle: 0 ************************* Street Name: Bay Ave Hill St

Approach: North Bound South Bound East Bound West Bound

Movement: L - T - R L - T - R L - T - R L - T - R -----|
 Control:
 Stop Sign
 Stop Sign
 Stop Sign
 Stop Sign

 Rights:
 Include
 Include
 Include
 Include

 Min. Green:
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0

 Lanes:
 1
 0
 1
 0
 1
 0
 0
 1
 0
 0
 1
 0
 0
 1
 0
 0
 1
 0
 0
 1
 0
 0
 1
 0
 0
 1
 0
 0
 1
 0
 0
 1
 0
 0
 1
 0
 0
 1
 0
 0
 1
 0
 0
 1
 0
 0
 1
 0
 0
 1
 0
 0
 1
 0
 0
 1
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0 -----|----||------| Volume Module: Base Vol: 99 462 26 224 614 71 139 60 79 31 40 Initial Bse: 99 462 26 224 614 71 139 60 79 31 40 152 PHF Volume: 99 462 26 224 614 71 139 60 79 31 40 152 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 0 Reduced Vol: 99 462 26 224 614 71 139 60 79 31 40 152 -----||-----||------|

Saturation Flow Module:

Vol/Sat: 0.27 0.62 0.61 0.56 0.80 0.79 0.53 0.53 0.19 0.52 0.52 0.52 Crit Moves: **** **** **** Delay/Veh: 15.4 24.3 24.1 21.9 35.7 34.7 21.1 21.1 12.6 19.3 19.3 19.3 AdjDel/Veh: 15.4 24.3 24.1 21.9 35.7 34.7 21.1 21.1 12.6 19.3 19.3 19.3 LOS by Move: C C C C E D C C B C C 22.8 18.7 ApproachDel: 32.3 19.3 Approact
Delay Adj: 1.00 1.00 1.00 1.00 32.3 18.7 22.8 C ApprAdiDel: 19.3 LOS by Appr: AllWayAvgQ: 0.3 1.4 1.4 1.2 3.0 2.9 1.0 1.0 0.2 1.0 1.0

Note: Queue reported is the number of cars per lane.

Traffix 8.0.0715 (c) 2008 Dowling Assoc. Licensed to RBF, MONTEREY BAY
2035 PM Tue Oct 22, 2013 09:48:47 Page 16-1

Level Of Service Computation Report 2000 HCM 4-Way Stop Method (Base Volume Alternative)

Intersection #14 Capitola Ave / Bay Ave

Movement: L - T - R L L - T - T - R

Capacity Analysis Module:
Vol/Sat: 0.75 0.75 0.02 0.53 0.53 0.84 0.84 0.38 0.13 0.69 0.69
Crit Moves: *** **** ****

Delay/Veh: 29.9 29.9 10.0 19.1 19.1 19.1 37.5 37.5 13.4 12.1 24.7 24.7 LOS by Move: D D A C C E E В в с 19.1 29.4 22.8 ApproachDel: 29.4 1.00 1.00 1.00 1.00 Delay Adj: ApprAdjDel: 19.1 C ApprAdjDel: 29.4 LOS by Appr: D 29.4 22.8 D AllwayAvqQ: 2.3 2.3 0.0 0.9 0.9 0.9 3.6 3.6 0.6 0.1 1.8 1.8

Note: Queue reported is the number of cars per lane.

Traffix 8.0.0715 (c) 2008 Dowling Assoc. Licensed to RBF, MONTEREY BAY
2035 PM Tue Oct 22, 2013 09:48:47 Page 17-1

		 T	evel (of Serv	 vice (Computa	tion F	 Report	 -			
*****		HCM 4	1-Way S	Stop Me	ethod	(Base	Volume	e Ālte	ernativ		****	*****
Intersection						*****	****	*****	*****	****	****	*****
Cycle (sec):		10	00						o.(X):			
Loss Time (se	ec):		0						ec/veh)	:	12	2.7
Optimal Cycle	≘: *****	*****	0	****	****	Level *****				****	****	B *****
Street Name:			Monter	ey Ave	9				Bay	Ave		
Approach:	No	rth Bo	ound	Sou	uth Bo	ound	Εa	ast Bo	ound		est Bo	
Movement:												
Rights:	Stop SignStop SignStop SignIncludeIncludeInclude0000000											
Min. Green:			0	0	0	0	0	0	0	0	0	0
Lanes:			0 0			1 0			0 0		0 0	
volume module	∃•											
Base Vol:	206			1 00	45	140	172	1 00		1 00		1 00
Growth Adj:			1.00	1.00	1.00	1.00	1.00	1.00	1.00		1.00	1.00
Initial Bse: User Adj:			0 1.00		45 1.00	140 1.00		1.00	246 1.00	1 00	0 1.00	0 1.00
_		0.95	0.95		0.95	0.95		0.95	0.95		0.95	0.95
PHF Volume:			0.55	0.55		147	181	0.55	259	0.23		0.55
Reduct Vol:	0		0	0	0	0	0	0	0	0		0
Reduced Vol:			0	0	47	147	181	0	259	0		0
PCE Adj:		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
MLF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
FinalVolume:						147	181		259		0	0
Saturation F												
Adjustment:				1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Lanes:	0.77	0.23	0.00	0.00	0.24	0.76	0.41	0.01	0.58	0.00	0.00	0.00
Final Sat.:				0			299		427	0	0	0
Capacity Ana												
Vol/Sat:	-	0.44		xxxx	0.29	0.29	0.61	0.00	0.61	xxxx	xxxx	xxxx
Crit Moves:		****			****		****					
Delay/Veh:	12.2	12.2	0.0	0.0	9.7	9.7	14.3	14.3	14.3	0.0	0.0	0.0
Delay Adj:			1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
AdjDel/Veh:		12.2	0.0	0.0	9.7	9.7	14.3	14.3	14.3	0.0	0.0	0.0
LOS by Move:	В	В	*	*	A	A	В	В	В	*	*	*
ApproachDel:		12.2			9.7			14.3		X	xxxxx	
Delay Adj:		1.00			1.00			1.00			xxxxx	
ApprAdjDel:		12.2			9.7			14.3		X	xxxxx	
LOS by Appr:		В		0 0	A			В		0 0	*	0 0
AllWayAvgQ:	0.7		0.7 *****	0.3 ****	0.3 ****	0.3 *****	1.3	1.3	1.3 *****	0.0	0.0 ****	0.0 ****
Note: Queue												

Level Of Service Computation Report 2000 HCM 4-Way Stop Method (Base Volume Alternative) Intersection #16 Monterey Ave / Park Ave ************************* Cycle (sec): 100 Critical Vol./Cap.(X): Loss Time (sec): 0 Average Delay (sec/veh): 60.7 Optimal Cycle: 0 Level Of Service: F ************************ Street Name: Monterey Ave Park Ave
Approach: North Bound South Bound East Bound West Bound
Movement: L - T - R L - T - R L - T - R L - T - R -----||-----||------| Volume Module: Base Vol: 2 202 679 153 122 3 15 12 15 308 10 61 Initial Bse: 2 202 679 153 122 3 15 12 15 308 10 61 -----||-----||-----| Saturation Flow Module: Lanes: 0.01 0.99 1.00 0.56 0.44 1.00 0.36 0.28 0.36 0.81 0.03 0.16 Final Sat.: 5 538 612 264 211 545 154 123 154 436 14 86 -----| Capacity Analysis Module: Vol/Sat: 0.39 0.39 1.17 0.61 0.61 0.01 0.10 0.10 0.10 0.74 0.74 **** **** Crit Moves: Delay/Veh: 13.5 13.5 113.8 20.6 20.6 9.2 11.4 11.4 11.4 25.9 25.9 25.9 AdjDel/Veh: 13.5 13.5 113.8 20.6 20.6 9.2 11.4 11.4 11.4 25.9 25.9 25.9 C C В LOS by Move: B B F A B B D D 20.4 25.9 ApproachDel: 90.6 11.4 1.00 1.00 1.00 1.00 Delay Adj: ApprAdjDel: 20.4 C ApprAdjDel: 90.6 LOS by Appr: F 11.4 AllWayAvqQ: 0.6 0.6 17.9 1.4 1.4 0.0 0.1 0.1 0.1 2.4 2.4

Note: Queue reported is the number of cars per lane.

Traffix 8.0.0715 (c) 2008 Dowling Assoc. Licensed to RBF, MONTEREY BAY 2035 PM Tue Oct 22, 2013 09:48:47 Page 18-1

Traffix 8.0.0715 (c) 2008 Dowling Assoc. Licensed to RBF, MONTEREY BAY
2035 PM Tue Oct 22, 2013 09:48:47 Page 19-1

201000 1101110							200011		
Approach:	North Bo	ound	Sout	th Bou	ınd	East	Bound	West B	ound
Movement:	L - T	- R	L -	Т -	- R	L -	T - R	L - T	- R
Control:	Stop Si	gn	Sto	op Sig	gn	Stop	Sign	Stop S	ign
Rights:	Inclu	ıde		Includ	de	In	clude	Incl	ude
Min. Green:	0 0	0	0	0	0	0	0 0	0 0	0
Lanes:	1 0 0	0 1	0 0	1! (0 0	0 0	0 1 0	0 1 0	0 0
Volume Module	e:								
Base Vol:	272 0	501	6	38	17	0	25 308	374 86	0
Growth Adj:	1.00 1.00	1.00	1.00	1.00	1.00	1.00 1.	00 1.00	1.00 1.00	1.00
Initial Bse:	272 0	501	6	38	17	0	25 308	374 86	0
User Adj:	1.00 1.00	1.00	1.00	1.00	1.00	1.00 1.	00 1.00	1.00 1.00	1.00
PHF Adj:	0.95 0.95	0.95	0.95 (0.95	0.95	0.95 0.	95 0.95	0.95 0.95	0.95

Capacity Analysis Module:

Note: Queue reported is the number of cars per lane.

AllWayAvgQ: 1.5 0.0 6.3 0.2 0.2 0.2 1.6 1.6 1.6 5.5 5.5 5.5

2035 PM Tue Oct 22, 2013 09:48:47 Page 20-1 Level Of Service Computation Report 2000 HCM 4-Way Stop Method (Base Volume Alternative) Intersection #18 Monterey Ave / Capitola Ave ************************* Cycle (sec): Critical Vol./Cap.(X): Loss Time (sec): 0
Optimal Cycle: 0 Average Delay (sec/veh): Level Of Service: ************************ Street Name: Monterey Ave Capitola Ave
Approach: North Bound South Bound East Bound West Bound
Movement: L - T - R L - T - R L - T - R L - T - R -----||-----||------| Volume Module: Base Vol: 95 155 0 0 0 374 523 0 0 Initial Bse: 95 155 0 0 0 374 523 0 0 0 0 -----|----||------| Saturation Flow Module: Final Sat.: 208 339 0 0 0 636 616 0 0 0 0 -----||-----||------| Capacity Analysis Module: Vol/Sat: 0.48 0.48 xxxx xxxx xxxx 0.62 0.89 xxxx xxxx xxxx xxxx xxxx **** **** Crit Moves: Delay/Veh: 14.4 14.4 0.0 0.0 0.0 16.0 37.4 0.0 0.0 0.0 0.0 * E * * * C 16.0 * * * LOS by Move: B B 14.4 ApproachDel: 37.4 XXXXXX 1.00 1.00 1.00 Delay Adj: ApprAdjDel: xxxxxx 16.0 C 14.4 37.4 LOS by Appr: B AllWayAvqQ: 0.8 0.8 0.8 1.3 1.3 1.3 4.9 4.9 4.9 0.0 0.0 0.0 ******************

Traffix 8.0.0715 (c) 2008 Dowling Assoc. Licensed to RBF, MONTEREY BAY

Note: Queue reported is the number of cars per lane.

Traffix 8.0.0715 (c) 2008 Dowling Assoc. Licensed to RBF, MONTEREY BAY
2035 PM Tue Oct 22, 2013 09:48:47 Page 21-1

Level Of Service Computation Report

2000 HCM Operations Method (Base Volume Alternative)

2000 HCM Operations Method (Base Volume Alternative)														

Cycle (sec): 80 Critical Vol./Cap.(X): 0.685 Loss Time (sec): 9 Average Delay (sec/veh): 21.7 Optimal Cycle: 47 Level Of Service: C														
Cycle (sec).	٠	'	00			CITCIC	al VO.	1./Cap) · (A) ·		0.0	7		
Optimal Cral	ec).		9 17			Averag	of co-	ay (St	·	•	۷ ـ	. /		
**********	e. *****	++++	4 / * * * * * * * *	++++			OI 261	rvice		+++++	++++	· + + + + + +		
Street Name:														
Approach:	NOI	rtn B	ouna	SOI	ıtn Bo	ouna	_ E &	ast Bo	ouna	we	ST BO	ouna		
Movement:	' Г	- T	- R	' г.	- T	- R	' Г	- T	- R	_ ь -	Т.	- R		
Control:	PI	Tro = 1.	ted	P	Tonal.	.eu	_	reruiti	.dea	P		. Lea		
Rights:	Include Include Include 0 0 0 0 0 0 0										Inclu			
				4 0	4 0							0		
Y+R:	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0		
Lanes:	Т (0 2	0 0	, 0 () I	0 1	, 0 (0 0	0 0	1 0	U	1 0		
Volume Module	 -:													
			0	Λ	478	451	Λ	Λ	0	297	13	286		
Growth Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0														
User Adj:			1.00		1.00	1.00		1.00		1.00		1.00		
PHF Adj:			0.95		0.95			0.95		0.95		0.95		
PHF Volume:			0.55	0.55					0.00	313	14	301		
Reduct Vol:			0		0						0	0		
Reduced Vol:			0	0					0	313	14	301		
PCE Adi:			1.00		1.00			1.00		1.00		1.00		
MLF Adj:			1.00		1.00			1.00				1.00		
FinalVolume:			0	0		475		0	0	313		301		
Saturation F						I			I					
Saturation F. Sat/Lane:		1900		1900	1900	1900	1000	1900	1900	1900	1000	1900		
Adjustment:			1.00		1.00					0.85		0.86		
Lanes:					1.00			0.00		1.00				
Final Sat.:				0.00			0.00			1615		1556		
			I											
Capacity Ana				I		Į	I		Į	I		I		
Vol/Sat:				0.00	0.26	0.29	0.00	0.00	0.00	0.19	0.19	0.19		
Crit Moves:			0.00	0.00	0.20	****	0.00	0.00	0.00	0.17	****	0.17		
Green/Cycle:			0.00	0.00	0.43	0.43	0.00	0.00	0.00	0.28	0.28	0.28		
Volume/Cap:			0.00		0.62	0.69		0.00	0.00	0.69		0.69		
Uniform Del:			0.0		17.7	18.5		0.0	0.0	25.5		25.5		
IncremntDel:			0.0	0.0		2.9	0.0		0.0		4.3	4.3		
InitQueuDel:	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
Delay Adj:		1.00	0.00		1.00	1.00		0.00	0.00	1.00		1.00		
Delay/Veh:	37.0	7.2	0.0		19.2	21.3	0.0	0.0	0.0	29.9		29.8		
User DelAdj:			1.00		1.00	1.00		1.00	1.00	1.00		1.00		
AdjDel/Veh:	37.0	7.2	0.0		19.2	21.3	0.0	0.0	0.0	29.9		29.8		
LOS by Move:	J7.0	7.2 A	0.0 A	0.0 A	17.2	Z1.3	0.0 A	0.0 A	0.0 A	20.5 C	27.0 C	23.0 C		
HCM2kAvqQ:	5	3	0	0	10	11	0	0	0	8	8	8		

Note: Queue reported is the number of cars per lane.

Traffix 8.0.0715 (c) 2008 Dowling Assoc. Licensed to RBF, MONTEREY BAY 2035 PM Tue Oct 22, 2013 09:48:47 Page 22-1

Level Of Service Computation Report 2000 HCM Operations Method (Base Volume Alternative) ****************** Intersection #20 Park Ave / SR-1 SB Ramps ************************* Cycle (sec): 75 Critical Vol./Cap.(X):
Loss Time (sec): 9 Average Delay (sec/veh):
Optimal Cycle: 109 Level Of Service: Critical Vol./Cap.(X): 0.943 ************************* Street Name: Park Ave SR-1 SB Ramps
Approach: North Bound South Bound East Bound West Bound
Movement: L - T - R L - T - R L - T - R -----| Volume Module: Base Vol: 0 296 737 357 430 0 363 34 243 0 0 Initial Bse: 0 296 737 357 430 0 363 34 243 0 0 0 Saturation Flow Module: Adjustment: 1.00 0.95 0.85 0.95 1.00 1.00 0.92 0.92 0.85 1.00 1.00 1.00 Lanes: 0.00 2.00 1.00 1.00 1.00 0.00 1.83 0.17 1.00 0.00 0.00 Final Sat.: 0 3610 1615 1805 1900 0 3179 298 1615 0 0 -----| Capacity Analysis Module: Vol/Sat: 0.00 0.08 0.47 0.20 0.23 0.00 0.12 0.12 0.16 0.00 0.00 0.00 **** Crit Moves: **** Green/Cycle: 0.00 0.50 0.50 0.22 0.72 0.00 0.16 0.16 0.16 0.00 0.00 0.00

Note: Queue reported is the number of cars per lane.

AdjDel/Veh: 0.0 10.3 36.9 60.1 4.1 0.0 34.0 34.0 70.7 0.0 0.0 LOS by Move: A B D E A A C C E A A HCM2kAvgQ: 0 2 22 10 4 0 6 6 10 0 0 *******************

Traffix 8.0.0715 (c) 2008 Dowling Assoc. Licensed to RBF, MONTEREY BAY 2035 PM Tue Oct 22, 2013 09:48:47 Page 23-1 Level Of Service Computation Report 2000 HCM 4-Way Stop Method (Base Volume Alternative) ****************** Intersection #21 Park Ave / Kennedy Dr ************************* Cycle (sec): 100 Critical Vol./Cap.(X):
Loss Time (sec): 0 Average Delay (sec/veh):
Optimal Cycle: 0 Level Of Service: Critical Vol./Cap.(X): 1.706 ************************* Street Name: Park Ave Kennedy Dr
Approach: North Bound South Bound East Bound West Bound
Movement: L - T - R L - T - R L - T - R -----|
 Control:
 Stop Sign
 Include
 Incl -----||-----||------| Volume Module: Base Vol: 8 397 294 310 165 185 201 137 6 85 60 Initial Bse: 8 397 294 310 165 185 201 137 6 85 60 314 PHF Volume: 8 418 309 326 174 195 212 144 6 89 63 331 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reduced Vol: 8 418 309 326 174 195 212 144 6 89 63 331

Saturation Flow Module:

-----||-----||------|

Capacity Analysis Module:

Vol/Sat: 1.71 1.71 1.71 1.64 1.64 1.64 0.91 0.91 0.91 0.40 0.40 0.78 Crit Moves: **** **** Delay/Veh: 348.2 348 348.2 322.1 322 322.1 55.2 55.2 55.2 18.2 18.2 34.2 AdjDel/Veh: 348.2 348.348.2 322.1 322 322.1 55.2 55.2 55.2 18.2 18.2 34.2 LOS by Move: F F F F F F F C C D 348.2 322.1 55.2 ApproachDel: 29.1 1.00 1.00 Delay Adj: ApprAdjDel: 1.00 1.00 55.2 ApprAdjDel: 348.2 322.1 LOS by Appr: F 29 1 AllWayAvgQ: 40.3 40.3 40.3 36.4 36.4 36.4 4.8 4.8 4.8 0.6 0.6

Note: Queue reported is the number of cars per lane.

Level Of Service Computation Report 2000 HGM Operations Method (Future Volume Alternative)														
Theersection #10 Wharf Rd / Cliff Dr / Stockton Ave		2000 #									\			
Cycle (sec): 70														
Cycle (sec):														
Street Name: North Bound South Bound Cliff Dr / Stockton Ave Approach: North Bound South Bound Cliff Dr / Stockton Ave Approach: North Bound L - T - R	Cycle (sec):		7	0			Critic	al Vo	l./Car	o.(X):		0.4	126	
Street Name											:	9		
Street Name														
Approach: North Bound Movement: L - T - R L T L T - R L T T - R L T T - R L T T - R L T T - R L		*****	****			****	*****							
Movement:		Nor	th Bo											
Control:	Movement:				L -	- T	- R	L ·	- T	- R				
Rights:														
Min. Green: 0 <th< td=""><td></td><td></td><td></td><td></td><td>Sp.</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>					Sp.									
Y+R:	_				0							_		
Volume Module: Base Vol: 5 8 8 8 220 5 18 20 330 0 10 478 467 Growth Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0														
Volume Module: Base Vol: 5 8 8 220 5 18 20 330 0 10 478 467 Growth Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0														
Base Vol:		1												
Growth Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0			8	8	220	5	1.8	20	330	Ο	1.0	478	467	
Initial Bse: 5 8 8 8 220 5 18 20 330 0 10 478 467 Added Vol: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0														
PasserByVol: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	_			8	220	5	18	20	330	0	10	478	467	
Initial Fut: 5 8 8 8 220 5 18 20 330 0 10 478 467 User Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0					-									
User Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	-		-											
PHF Adj:														
Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0														
Reduced Vol: 5 8 8 8 232 5 19 21 347 0 11 503 0 PCE Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	PHF Volume:	5	8	8	232	5	19	21	347	0	11	503	0	
PCE Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0														
MLF Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0													-	
Saturation Flow Module: Sat/Lane: 1900 1900 1900 1900 1900 1900 1900 190	_													
Saturation Flow Module: Sat/Lane: 1900 1900 1900 1900 1900 1900 1900 190						5	19				11	503	0	
Sat/Lane: 1900 1900 1900 1900 1900 1900 1900 190														
Adjustment: 0.94 0.94 0.94 0.95 0.95 0.95 0.97 0.97 1.00 0.99 0.99 1.00 Lanes: 0.24 0.38 0.38 0.91 0.02 0.07 0.06 0.94 0.00 0.02 0.98 1.00 Final Sat.: 424 679 679 1630 37 133 105 1732 0 39 1850 1900					1900	1900	1900	1900	1900	1900	1900	1900	1900	
Final Sat:: 424 679 679 1630 37 133 105 1732 0 39 1850 1900	Adjustment:	0.94	0.94											
Capacity Analysis Module: Vol/Sat: 0.01 0.01 0.01 0.01 0.14 0.14 0.14 0.20 0.20 0.00 0.27 0.27 0.00 Crit Moves: **** **** Green/Cycle: 0.03 0.03 0.03 0.33 0.33 0.33 0.64 0.64 0.00 0.64 0.64 0.00 Volume/Cap: 0.43 0.43 0.43 0.43 0.43 0.43 0.31 0.31 0.00 0.43 0.43 0.00 Uniform Del: 33.4 33.4 33.4 18.1 18.1 18.1 5.7 5.7 0.0 6.3 6.3 0.0 IncremntDel: 5.6 5.6 5.6 0.5 0.5 0.5 0.5 0.2 0.2 0.2 0.0 0.2 0.2 0.0 InitQueuDel: 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.														
Capacity Analysis Module: Vol/Sat: 0.01 0.01 0.01 0.01 0.14 0.14 0.14 0.20 0.20 0.00 0.27 0.27 0.00 Crit Moves: **** **** Green/Cycle: 0.03 0.03 0.03 0.33 0.33 0.33 0.64 0.64 0.00 0.64 0.64 0.00 Volume/Cap: 0.43 0.43 0.43 0.43 0.43 0.43 0.31 0.31 0.00 0.43 0.43 0.00 Uniform Del: 33.4 33.4 33.4 18.1 18.1 18.1 5.7 5.7 0.0 6.3 6.3 0.0 IncremntDel: 5.6 5.6 5.6 0.5 0.5 0.5 0.5 0.2 0.2 0.2 0.0 0.2 0.2 0.0 InitQueuDel: 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.											39	1850	1900	
Vol/Sat: 0.01 0.01 0.01 0.14 0.14 0.14 0.14 0.20 0.20 0.00 0.27 0.27 0.20 Crit Moves: **** **** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ****** ***** ***** ****** ****** ****** ****** ****** ****** ****** ****** ******* ******* ******** ******* ******* ******* ******** ******* ********* ********** ********** *********** *********** *********** ************* ************* ************** <t< td=""><td></td><td>l .</td><td></td><td>- 1</td><td> </td><td></td><td> </td><td> </td><td></td><td> </td><td> </td><td></td><td> </td></t<>		l .		- 1										
Green/Cycle: 0.03 0.03 0.03 0.33 0.33 0.33 0.64 0.64 0.00 0.64 0.64 0.00 Volume/Cap: 0.43 0.43 0.43 0.43 0.43 0.43 0.31 0.31 0.00 0.43 0.43 0.00 Uniform Del: 33.4 33.4 33.4 18.1 18.1 18.1 5.7 5.7 0.0 6.3 6.3 0.0 IncremntDel: 5.6 5.6 5.6 0.5 0.5 0.5 0.5 0.2 0.2 0.0 0.2 0.2 0.0 InitQueuDel: 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.					0.14	0.14	0.14	0.20	0.20	0.00	0.27	0.27	0.00	
Volume/Cap: 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.43														
Uniform Del: 33.4 33.4 33.4 18.1 18.1 18.1 5.7 5.7 0.0 6.3 6.3 0.0 IncremntDel: 5.6 5.6 5.6 0.5 0.5 0.5 0.5 0.2 0.2 0.2 0.0 0.2 0.2 0.0 InitQueuDel: 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.														
IncremntDel: 5.6 5.6 5.6 0.5 0.5 0.5 0.2 0.2 0.2 0.0 0.2 0.2 0.0 InitQueuDel: 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.														
InitQueuDel: 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.														
Delay/Veh: 39.0 39.0 39.0 18.6 18.6 18.6 5.9 5.9 0.0 6.6 6.6 0.0 User DelAdj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0				0.0			0.0	0.0	0.0	0.0				
User DelAdj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0														
AdjDel/Veh: 39.0 39.0 39.0 18.6 18.6 18.6 5.9 5.9 0.0 6.6 6.6 0.0 LOS by Move: D D D B B B A A A A A A	_													
LOS by Move: D D D B B B A A A A A														
	-													
32	HCM2kAvgQ:	1	1	1	5	5	5	4	4	0	6	6	0	

Traffix 8.0.0715 (c) 2008 Dowling Assoc. Licensed to RBF, MONTEREY BAY

MITIGO - 203:		1 u 	ie OCt 1, 2								
	 I	Level C	of Service	Computa	tion Report	 :					
*****					Volume Alt			****			
Intersection						*****	*****	*****			
Cycle (sec):	-	7.0		Critic	al Vol./Car						
Loss Time (sec): 0 Average Delay (sec/veh): 13.3 Optimal Cycle: OPTIMIZED Level Of Service: B											
Optimal Cycle	e: OPTIMIZE	ED * * * * * * * *	*****	Level			*****	_			
Street Name:			f Rd				stockton Ave				
Approach:	North Bo	nund	South F	Round	East Bo	nund	West Bo	und			
Movement:	L - T	- R	L - T	- R	L - T	- R	L - T	- R			
Control: Rights:	Incli	ide ide	Incl	lude	Incli	ide	Permit Ignor				
Min. Green:			0 (0 0		_	0			
Y+R:	4.0 4.0	4.0	4.0 4.0	4.0	4.0 4.0	4.0	4.0 4.0	4.0			
Lanes:			0 0 1!				0 1 0				
Volume Module	•										
Base Vol:		9	464 15	5 12	18 546	0	10 378	303			
Growth Adj:	1.00 1.00	1.00	1.00 1.00	1.00	1.00 1.00	1.00	1.00 1.00	1.00			
Initial Bse:		9	464 15		18 546	0	10 378	303			
Added Vol:	0 0		0 (0 0	0	0 0	0			
PasserByVol: Initial Fut:	0 0 3 5	0 9	0 (464 15		0 0 18 546	0	0 0 10 378	0 303			
User Adj:		1.00	1.00 1.00		1.00 1.00	1.00	1.00 1.00	0.00			
PHF Adj:		1.00	1.00 1.00		1.00 1.00	1.00	1.00 1.00	0.00			
		9	464 15		18 546	0	10 378	0			
Reduct Vol: Reduced Vol:		0	0 (464 15		0 0	0	0 0 10 378	0			
PCE Adj:			464 15 1.00 1.00		18 546 1.00 1.00	0 1.00		0.00			
	1.00 1.00	1.00	1.00 1.00		1.00 1.00	1.00	1.00 1.00	0.00			
FinalVolume:		9	464 15		18 546	0	10 378	0			
Cotumetics E											
Saturation Financial Sat/Lane:			1900 1900	1900	1900 1900	1900	1900 1900	1900			
Adjustment:			0.95 0.95		0.99 0.99		0.99 0.99	1.00			
Lanes:			0.95 0.03	0.02	0.03 0.97		0.03 0.97	1.00			
Final Sat.:			1710 55			0		1900			
Capacity Anal											
Vol/Sat:	0.01 0.01	0.01	0.27 0.27	7 0.27	0.30 0.30	0.00	0.21 0.21	0.00			
Crit Moves:	****	0.01	0.27	****	****	0.00	0.22 0.22	0.00			
<pre>Green/Cycle:</pre>		0.02	0.47 0.47		0.52 0.52	0.00	0.52 0.52	0.00			
Volume/Cap:	0.58 0.58	0.58	0.58 0.58		0.58 0.58	0.00	0.40 0.40	0.00			
<pre>Uniform Del: IncremntDel:</pre>		34.2 26.4	13.7 13.7		11.7 11.7 0.9 0.9	0.0	10.3 10.3 0.3	0.0			
InitOueuDel:	0.0 0.0	0.0	0.0 0.0		0.0 0.0	0.0	0.0 0.0	0.0			
Delay Adj:	1.00 1.00	1.00	1.00 1.00		1.00 1.00	0.00	1.00 1.00	0.00			
Delay/Veh:	60.6 60.6	60.6	14.7 14.7		12.6 12.6	0.0	10.6 10.6	0.0			
User DelAdj:		1.00	1.00 1.00		1.00 1.00 12.6 12.6	1.00	1.00 1.00	1.00			
AdjDel/Veh: LOS by Move:	60.6 60.6 E E	60.6 E	14.7 14.7 B		12.6 12.6 B B	0.0 A	10.6 10.6 B B	0.0 A			
HCM2kAvgQ:	1 1	1	8 8		9 9	0	5 5	0			

Traffix 8.0.0715 (c) 2008 Dowling Assoc. Licensed to RBF, MONTEREY BAY

LANE SUMMARY

Site: 10. Wharf Road / Stockton Ave: 2035 AM

Wharf Rd / Cliff Dr / Stockton Ave
 2035 with Proposed Plan Conditions
 AM Peak Hour
 Roundabout

Lane Use	and Pe	rforma	ance													
		Deman	d Flows		111/	Can	Deg.	Lane	Average	Level of	95% Back		Lane	SL		Prob.
	L veh/h	T veh/h	R voh/h	Total veh/h	HV %	Cap.	Satn v/c	Util. %	Delay sec	Service	Vehicles veh	Distance ft	Length ft	Type	Adj. %	Block.
East: Stockt		VEII/II	veii/ii	VCII/II	/0	VCII/II	V/C	/0	366	_	Veii	11	11	_	/0	/0
Lane 1	11	509	0	519	2.0	1068	0.486	100	8.9	LOS A	3.0	75.3	1600	_	0.0	0.0
Lane 2	0	0	497	497	2.0	834 ¹	0.596	100	13.4	LOS B	2.7	69.1	100	Turn Bay	0.0	0.0
Approach	11	509	497	1016	2.0		0.596		11.1	LOS B	3.0	75.3				
North: Whar	f Rd															
Lane 1	234	5	19	259	2.0	648	0.399	100	11.2	LOS B	1.8	44.5	1600	_	0.0	0.0
Approach	234	5	19	259	2.0		0.399		11.2	LOS B	1.8	44.5				
West: Cliff D)r															
Lane 1	21	351	11	373	2.0	858	0.435	100	9.6	LOS A	2.1	53.6	1600	_	0.0	0.0
Approach	21	351	1	373	2.0		0.435		9.6	LOSA	2.1	53.6				
South West	: Wharf	Rd														
Lane 1	5	9	9	23	3.0	591	0.039	100	6.5	LOSA	0.1	3.1	1600	_	0.0	0.0
Approach	5	9	9	23	3.0		0.039		6.5	LOSA	0.1	3.1				
Intersection				1671	2.0		0.596		10.7	LOS B	3.0	75.3				

Level of Service (LOS) Method: Delay & v/c (HCM 2010).

Roundabout LOS Method: Same as Sign Control.

Lane LOS values are based on average delay and v/c ratio (degree of saturation) per lane.

LOS F will result if v/c > irrespective of lane delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 2010).

Roundabout Capacity Model: US HCM 2010.

HCM Delay Model used. Geometric Delay not included.

1 Reduced capacity due to a short lane effect

Processed: Tuesday, October 22, 2013 10:11:03 AM SIDRA INTERSECTION 5.1.13.2093

Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

Project: H:\Pdata\70100329\Traffic\TRAFFIX\Miti\RAB Analysis.sip 8000182, RBF CONSULTING, FLOATING

Site: 10. Wharf Road / Stockton Ave: 2035 PM

10. Wharf Rd / Cliff Dr / Stockton Ave 2035 with Proposed Plan Conditions PM Peak Hour Roundabout

Lane Use	and Pe	rforma	ance													
		Deman	d Flows		111/	0	Deg.	Lane	Average	Level of	95% Back		Lane	SL		Prob.
	L veh/h	T veh/h	R	Total veh/h	HV %	Cap.	Satn v/c	Util. %	Delay	Service	Vehicles veh	Distance ft	Length ft	Type	Adj. %	Block.
East: Stockt		ven/n	ven/n	ven/m	70	ven/n	V/C	70	sec		ven	IL	11		70	70
Lane 1	11	402	0	413	2.0	1076	0.384	100	7.3	LOS A	2.0	50.7	1600	_	0.0	0.0
Lane 2	0	0	322	322	2.0	835 ¹	0.386	100	8.9	LOSA	1.4	35.0	100	Гurn Bay	0.0	0.0
Approach	11	402	322	735	2.0		0.386		8.0	LOSA	2.0	50.7				
North: Whar	f Rd															
Lane 1	494	16	13	523	2.0	724	0.722	100	20.4	LOS C	5.9	150.1	1600	_	0.0	0.0
Approach	494	16	13	523	2.0		0.722		20.4	LOS C	5.9	150.1				
West: Cliff D)r															
Lane 1	19	581	1	601	2.0	651	0.923	100	43.8	LOS E	12.9	328.8	1600	_	0.0	0.0
Approach	19	581	1	601	2.0		0.923		43.8	LOS E	12.9	328.8				
South West	Wharf	Rd														
Lane 1	3	5	10	18	3.0	361	0.051	100	10.8	LOS B	0.2	3.9	1600	-	0.0	0.0
Approach	3	5	10	18	3.0		0.051		10.8	LOS B	0.2	3.9				
Intersection				1878	2.0		0.923		22.9	LOS C	12.9	328.8				

Level of Service (LOS) Method: Delay & v/c (HCM 2010).

Roundabout LOS Method: Same as Sign Control.

Lane LOS values are based on average delay and v/c ratio (degree of saturation) per lane.

LOS F will result if v/c > irrespective of lane delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 2010).

Roundabout Capacity Model: US HCM 2010.

HCM Delay Model used. Geometric Delay not included.

1 Reduced capacity due to a short lane effect

Processed: Tuesday, October 22, 2013 10:12:16 AM SIDRA INTERSECTION 5.1.13.2093

Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

Project: H:\Pdata\70100329\Traffic\TRAFFIX\Miti\RAB Analysis.sip 8000182, RBF CONSULTING, FLOATING

Level Of Service Computation Report														
2000 HCM Operations Method (Future Volume Alternative)														

Intersection							****	****	*****	****	*****	*****		
Cycle (sec):			30			Critic					0.9			
Loss Time (se	ec):							_	ec/veh)	:		1.5		
Optimal Cycle						Level						C		

Street Name: Porter St SR-1 NB Ramps														
Approach:	No	rth Bo	ound	Soi	uth Bo	ound	Εa	ast Bo	ound	We	est Bo	ound		
Movement:	L	- T	- R	L ·	- T	- R	L ·	- T	- R	L ·	- T	- R		
Control:	P	rotect	ced	Pı	rotect	ted	.]	?ermit	ted		Permit	ted		
Rights:	Include Ovl Include Include													
Min. Green:	0	0	0	0	0	0	0	0	0	0	0	0		
Y+R:	4.0		4.0	4.0		4.0	4.0		4.0			4.0		
Lanes:		0 2				1 0		0 0	0 0	1 (0 C	1 1		
Volume Module														
Base Vol:	389	662	0	0	486	744	0	0	0	203	27	429		
Growth Adj:		1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00		
Initial Bse:	389	662	0	0	486	744	0	0	0	203	27	429		
Added Vol:	0		0	0	0	0	0	0	0	0	0	0		
PasserByVol: Initial Fut:		0 662	0	0	0 486	0 744	0	0	0	0 203	0 27	0 429		
User Adj:			-	·			-	-	-			1.00		
PHF Adj:		1.00	1.00 0.95		1.00	1.00 0.95		1.00	1.00 0.95		1.00	0.95		
PHF Volume:	409	697	0.93	0.93	512	783	0.93	0.93	0.93	214	28	452		
Reduct Vol:	0		0	0	0	703	0	0	0	0	0	0		
Reduced Vol:	-	697	0	0	512	783	0	0	0	214	28	452		
PCE Adi:		1.00	1.00	-	1.00	1.00	-	1.00	1.00		1.00	1.00		
MLF Adj:		1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00		
FinalVolume:			0	0	512	783	0	0	0	214	28	452		
Saturation F	low M	odule	: '							•				
Sat/Lane:	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900		
Adjustment:	0.95	0.95	1.00	1.00	0.86	0.86	1.00	1.00	1.00	0.85	0.86	0.86		
Lanes:	1.00	2.00	0.00	0.00	1.00	1.00	0.00	0.00	0.00	1.00	0.12	1.88		
Final Sat.:			0		1641	1641	0	0	0	1615	193	3071		
	1													
Capacity Ana														
Vol/Sat:	0.23	0.19	0.00	0.00	0.31	0.48	0.00	0.00	0.00	0.13	0.15	0.15		

Crit Moves: **** **** **** Volume/Cap: 0.96 0.26 0.00 0.00 0.63 0.96 0.00 0.00 0.00 0.86 0.96 0.96 Uniform Del: 30.2 3.5 0.0 0.0 14.7 19.3 0.0 0.0 0.0 33.0 33.6 33.6 IncremntDel: 33.1 0.1
InitQueuDel: 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.6 15.8 0.0 25.3 30.0 30.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00 1.00 1.00 Delay Adj: 1.00 1.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00 63.2 3.6 0.0 0.0 Delay/Veh: 0.0 0.0 15.3 35.1 0.0 58.4 63.6 63.6 User DelAdj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 AdjDel/Veh: 63.2 3.6 0.0 0.0 15.3 35.1 0.0 0.0 0.0 58.4 63.6 63.6 LOS by Move: E Α A A B D Α Α Α E E E HCM2kAvgQ: 3 0 0 10 26 0 0 0 8 10 11 10

Traffix 8.0.0715 (c) 2008 Dowling Assoc. Licensed to RBF, MONTEREY BAY

MITIG8 - 2035	o PM	MC	on Sep s	30, 2	2013 16	:14:08	1			Page	1-1	
			of Servi									
	2000 HCM O											
*****						****	****	*****	****	*****	*****	
Intersection						*****	****	*****	****	*****	*****	
Cycle (sec):		80			Critic					0.8		
Loss Time (se					Averag							
Optimal Cycle	e: OPTIMIZ	ED			Level	Of Ser	vice:		С			
*****				* * * * *	*****						*****	
Street Name:		Porte		-1- D-				R-1 NB				
Approach: Movement:	L - T									est Bo - T		
Movement:	 	- K 			- K 			- K 				
Control:	Protec	ted	Pro	otect	ed	P	ermit	ted	Permitted			
Rights:	Incl			Ovl Include					Include			
Min. Green:	0 0							0		0	0	
Y+R:	4.0 4.0		4.0					4.0				
Lanes:	1 0 2				I			0 0 I		0 0		
Volume Module		I				1		1				
Base Vol:	337 505	0	0	851	483	0	0	0	227	13	465	
Growth Adj:	1.00 1.00	1.00	1.00 1	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Initial Bse:			0	851	483	0	0	0	227	13	465	
Added Vol:	0 0		0	0	0	0	0	0	0	0	0	
PasserByVol: Initial Fut:			0 0	0 851	0 483	0	0	0	0 227	0 13	0 465	
User Adj:			1.00 1		1.00	1.00	-	1.00	1.00		1.00	
PHF Adj:	1.00 1.00		1.00		1.00	1.00		1.00	1.00		1.00	
PHF Volume:	337 505	0	0	851	483	0	0	0	227	13	465	
Reduct Vol:	0 0		0	0	0	0	0	0	0	0	0	
Reduced Vol: PCE Adj:			0 1.00 1	851	483 1.00	0 1.00	1 00	0 1.00	227 1.00	1 00	465 1.00	
_	1.00 1.00		1.00		1.00	1.00		1.00	1.00		1.00	
FinalVolume:				851	483	0	0	0	227		465	
Saturation Fl												
Sat/Lane:	1900 1900		1900 1		1900	1900		1900			1900	
Adjustment: Lanes:	1.00 2.00		1.00 (1.00		1.00	0.85		0.85 1.95	
Final Sat.:				2179				0.00		88	3157	
Capacity Ana	lysis Modu	le:										
Vol/Sat:	0.19 0.14	0.00	0.00		0.39	0.00	0.00	0.00	0.14		0.15	
Crit Moves:	****	0 00		****	0 40	0 00	0 00	0 00	0 10	****	0 10	
<pre>Green/Cycle: Volume/Cap:</pre>	0.23 0.71 0.82 0.20		0.00 (0.48 0.82	0.00		0.00		0.18	0.18 0.82	
Uniform Del:			0.00		17.9	0.0	0.0	0.0		31.5	31.5	
IncremntDel:			0.0	3.3	3.3	0.0	0.0	0.0	12.6	8.7	8.7	
InitQueuDel:	0.0 0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Delay Adj:	1.00 1.00		0.00 1		1.00	0.00		0.00	1.00		1.00	
Delay/Veh:	41.2 4.0		0.0 2		21.2	0.0	0.0	0.0	43.9		40.2	
User DelAdj: AdjDel/Veh:	1.00 1.00 41.2 4.0		1.00 1		1.00 21.2	1.00	0.0	1.00	1.00	40.2	1.00 40.2	
LOS by Move:	D A		0.0 Z	C	Z1.Z	0.0 A	0.0 A	0.0 A	13.9 D	10.2 D	40.2 D	
HCM2kAvgQ:	7 2		0	17	17	0	0	0	7	8	8	

Traffix 8.0.0715 (c) 2008 Dowling Assoc. Licensed to RBF, MONTEREY BAY

LANE SUMMARY

14. Capitola Ave / Bay Ave 2035 with Proposed Plan Conditions AM Peak Hour Roundabout

Lane Use	and Pe	rforma	ance													
		Deman	d Flows		1.0.7		Deg.	Lane	Average	Level of		of Queue	Lane	SL	Сар.	
	L	T	R	Total	HV	Cap.	Satn	Util.	Delay	Service	Vehicles	Distance	Length	Type		Block.
South: Capi		veh/h	ven/n	veh/h	%	veh/h	v/c	%	sec		veh	ft	ft		%	%
Lane 1	132	139	0	271	2.0	782	0.347	100	8.8	LOS A	1.4	35.8	1600	_	0.0	0.0
Lane 2	0	0	6	6	2.0	830	0.008	100	4.4	LOSA	0.0	0.6		- Гurn Bay	0.0	0.0
	132	139	6	278	2.0	630	0.008	100	8.7	LOSA		35.8	150	Tulli bay	0.0	0.0
Approach	132	139	О	2/8	2.0		0.347		8.7	LUS A	1.4	35.8				
East: Bay A	ve															
Lane 1	45	217	36	298	2.0	790	0.377	100	9.2	LOS A	1.7	41.9	1600	_	0.0	0.0
Approach	45	217	36	298	2.0		0.377		9.2	LOSA	1.7	41.9				
North: Capit	tola Ave															
Lane 1	37	98	32	167	2.0	742	0.225	100	7.4	LOS A	0.8	21.5	1600	-	0.0	0.0
Approach	37	98	32	167	2.0		0.225		7.4	LOSA	0.8	21.5				
West: Bay A	ve															
Lane 1	61	200	168	429	2.0	922	0.465	100	9.6	LOS A	2.4	62.1	1600	_	0.0	0.0
Approach	61	200	168	429	2.0		0.465		9.6	LOSA	2.4	62.1				
Intersection				1171	2.0		0.465		8.9	LOSA	2.4	62.1				

Level of Service (LOS) Method: Delay & v/c (HCM 2010).

Roundabout LOS Method: Same as Sign Control.

Lane LOS values are based on average delay and v/c ratio (degree of saturation) per lane.

LOS F will result if v/c > irrespective of lane delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 2010).

Roundabout Capacity Model: US HCM 2010.

HCM Delay Model used. Geometric Delay not included.

Processed: Tuesday, October 22, 2013 10:22:45 AM SIDRA INTERSECTION 5.1.13.2093

Copyright © 2000-2011 Akcelik and Associates Pty Ltd

Project: H:\Pdata\70100329\Traffic\TRAFFIX\Miti\RAB Analysis.sip

8000182, RBF CONSULTING, FLOATING

www.sidrasolutions.com

Site: 14. Capitola / Bay: 2035 AM

LANE SUMMARY

14. Capitola Ave / Bay Ave 2035 with Proposed Plan Conditions PM Peak Hour Roundabout

Lane Use	and Pe	rforma	ance													
		Deman	d Flows				Deg.	Lane	Average	Level of	95% Back	of Queue	Lane	SL	Cap. I	Prob.
	L	T	R	Total	HV	Cap.	Satn	Util.	Delay	Service	Vehicles	Distance	Length	Type		Block.
0			veh/h	veh/h	%	veh/h	v/c	%	sec		veh	ft	ft		%	%
South: Capi			_													
Lane 1	182	146	0	328	2.0	672	0.488	100	12.8	LOS B	2.4	60.7	1600	-	0.0	0.0
Lane 2	0	0	10	10	2.0	723	0.013	100	5.1	LOSA	0.0	1.0	150 7	Turn Bay	0.0	0.0
Approach	182	146	10	337	2.0		0.488		12.6	LOS B	2.4	60.7				
East: Bay A	ve															
Lane 1	56	273	48	378	2.0	734	0.515	100	12.6	LOS B	2.8	71.8	1600	_	0.0	0.0
Approach	56	273	48	378	2.0		0.515		12.6	LOS B	2.8	71.8				
North: Capit	tola Ave															
Lane 1	55	117	45	217	2.0	657	0.330	100	9.8	LOSA	1.3	33.1	1600	_	0.0	0.0
Approach	55	117	45	217	2.0		0.330		9.8	LOSA	1.3	33.1				
West: Bay A	ve															
Lane 1	77	324	202	603	2.0	877	0.688	100	16.1	LOS C	5.9	148.8	1600	_	0.0	0.0
Approach	77	324	202	603	2.0		0.688		16.1	LOS C	5.9	148.8				
Intersection				1535	2.0		0.688		13.5	LOS B	5.9	148.8				

Level of Service (LOS) Method: Delay & v/c (HCM 2010).

Roundabout LOS Method: Same as Sign Control.

Lane LOS values are based on average delay and v/c ratio (degree of saturation) per lane.

LOS F will result if v/c > irrespective of lane delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 2010).

Roundabout Capacity Model: US HCM 2010.

HCM Delay Model used. Geometric Delay not included.

Processed: Tuesday, October 22, 2013 10:23:28 AM SIDRA INTERSECTION 5.1.13.2093

Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

Project: H:\Pdata\70100329\Traffic\TRAFFIX\Miti\RAB Analysis.sip

8000182, RBF CONSULTING, FLOATING

Site: 14. Capitola / Bay: 2035 PM

6.3 14.1 14.1 14.1

______ Level Of Service Computation Report 2000 HCM Operations Method (Future Volume Alternative) ****************** Intersection #16 Monterey Ave / Park Ave ************************ Cycle (sec): 60 Loss Time (sec): 6 Optimal Cycle: OPTIMIZED Critical Vol./Cap.(X): 0.737 Average Delay (sec/veh): Level Of Service: ************************ Street Name: Monterey Ave Park Ave Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R -----||-----||------| Volume Module: Base Vol: 12 140 266 143 162 8 12 6 30 449 6 55 -----||-----||------| Saturation Flow Module: Adjustment: 0.98 0.98 0.85 0.95 0.99 0.99 0.83 0.83 0.83 0.69 0.69 0.69 Lanes: 0.08 0.92 1.00 1.00 0.95 0.05 0.25 0.12 0.63 0.88 0.01 0.11 Final Sat.: 146 1706 1615 1805 1798 89 393 196 982 1162 16 142 -----| Capacity Analysis Module: Vol/Sat: 0.09 0.09 0.17 0.08 0.09 0.09 0.03 0.03 0.03 0.41 0.41 0.41 **** Crit Moves: Green/Cycle: 0.24 0.24 0.24 0.11 0.35 0.35 0.55 0.55 0.55 0.55 0.55

Traffix 8.0.0715 (c) 2008 Dowling Assoc. Licensed to RBF, MONTEREY BAY

5 3

LOS by Move: B B C D B B A A B B B

3

AdjDel/Veh: 19.7 19.7 28.7 38.9 14.3 14.3 6.3 6.3

7

3 3

HCM2kAvq0:

]	Level (of Serv	vice (Computa	tion	Report	_					
	2000 1					(Future				ve)				
*****											****	*****		
Intersection							++++	+++++		++++	++++			
Cycle (sec):			60					-	o.(X):					
Loss Time (s						_		-		:	32.1			
Optimal Cycl						Level								
*******		****				*****	****	****			****	*****		
Street Name:		_	Monter	-		_				Ave		_		
	No					ound					est Bo			
Movement:			- R			- R		- T			- T			
Control:		Permi	tted	Pi	rotect	ted		Permit	ted]	Permit	tted		
Rights:		Incl	ude		Incl	ude		Inclu	ıde		Incl	ıde		
Min. Green:	0	0	0	0	0	0	0	0	0	0	0	0		
Y+R:	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0		
Lanes:	0	1 0	0 1	1 (0 0	1 0	0	0 1!	0 0	0	0 1!	0 0		
Volume Modul	ė:					'								
Base Vol:	2	202	679	153	122	3	15	12	15	308	10	61		
Growth Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		
Initial Bse:			679	153	122	3	15		15	308	10	61		
Added Vol:	0		0	0	0	0	0		0	0	0	0		
PasserByVol:			0	0	0	0	0		0	0	0	0		
Initial Fut:			679	153	122	3	15		15	308	10	61		
User Adi:		1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00		
PHF Adj:		0.95	0.95		0.95	0.95		0.95	0.95		0.95	0.95		
PHF Volume:	2		715	161	128	3	16		16	324	11	64		
Reduct Vol:	0		0	0	0	0	0		0	0	0	0		
Reduced Vol:			715	161	128	3	16		16	324		64		
PCE Adi:		1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00		
_		1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00		
MLF Adj:														
FinalVolume:			715	161	128	3	16	13	16	324	11	64		
	1													
Saturation F				1000	1000	1000	1000	1000	1000	1000	1000	1000		
Sat/Lane:		1900	1900		1900	1900		1900	1900		1900	1900		
Adjustment:	1.00		0.85		1.00	1.00		0.85	0.85		0.72	0.72		
Lanes:		0.99	1.00		0.98	0.02		0.28	0.36		0.03	0.16		
Final Sat.:		1881	1615		1847	45	577	462	577	1108	36	220		
	1													
Capacity Ana	-		le:											
Vol/Sat:	0.11	0.11	0.44		0.07	0.07	0.03	0.03	0.03	0.29	0.29	0.29		
Crit Moves:			****	****							****			
Green/Cycle:	0.48	0.48	0.48	0.10	0.58	0.58		0.32	0.32	0.32	0.32	0.32		
Volume/Cap:	0.23	0.23	0.91	0.92	0.12	0.12	0.09	0.09	0.09	0.92	0.92	0.92		
Uniform Del:	9.0	9.0	14.3	26.8	5.7	5.7	14.3	14.3	14.3	19.7	19.7	19.7		
IncremntDel:	0.1	0.1	15.3	44.2	0.0	0.0	0.1	0.1	0.1	24.2	24.2	24.2		
InitQueuDel:	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
Delay Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		
Delay/Veh:	9.1	9.1	29.6	71.0	5.7	5.7		14.4	14.4		43.9	43.9		
User DelAdj:			1.00		1.00	1.00		1.00	1.00		1.00	1.00		
AdjDel/Veh:	9.1	9.1	29.6	71.0	5.7	5.7		14.4	14.4		43.9	43.9		
LOS by Move:	A	A	C	E	A	A	В		В	D	D	D		
HCM2kAvgQ:	2	2	17	6	1	0	1		1	12	12	12		
	2	2	± /	3		J		_	_	12	12	12		

Traffix 8.0.0715 (c) 2008 Dowling Assoc. Licensed to RBF, MONTEREY BAY

LANE SUMMARY

16. Monterey Ave / Park Ave 2035 with Proposed Plan Conditions AM Peak Hour Roundabout

Lane Use	and Pe	rform	ance													
		Deman	d Flows				Deg.	Lane	Average	Level of	95% Back	of Queue	Lane	SL	Cap. F	Prob.
	L	T	R	Total	HV	Сар.	Satn	Util.	Delay	Service	Vehicles	Distance	Length	Type		Block.
0 11 110	veh/h	veh/h	veh/h	veh/h	%	veh/h	v/c	%	sec		veh	ft	ft		%	%
South: NB																
Lane 1	2	138	0	140	2.0	885	Р	100	5.6	LOS A	0.6	14.3	1600	_	0.0	0.0
Lane 2	0	0	283	283	2.0	884	Р	100	7.6	LOS A	1.3	33.7	1600	_	0.0	0.0
Approach	2	138	283	423	2.0		0.320		6.9	LOSA	1.3	33.7				
East: WB																
Lane 1	478	3	45	526	2.0	948	Р	100	11.2	LOS B	3.4	86.1	1600	_	0.0	0.0
Approach	478	3	45	526	2.0		0.555		11.2	LOS B	3.4	86.1				
North: SB																
Lane 1	152	172	9	333	2.0	677	Р	100	12.8	LOS B	2.5	64.2	1600	_	0.0	0.0
Approach	152	172	9	333	2.0		0.492		12.8	LOS B	2.5	64.2				
West: EB																
Lane 1	13	6	32	51	2.0	489	Р	100	8.7	LOSA	0.3	8.5	1600	_	0.0	0.0
Approach	13	6	32	51	2.0		0.104		8.7	LOS A	0.3	8.5				
Intersection				1333	2.0		0.555		10.2	LOS B	3.4	86.1				

P: You need to Process this Site (F9) for this variable to be computed.

Level of Service (LOS) Method: Delay & v/c (HCM 2010).

Roundabout LOS Method: Same as Sign Control.

Lane LOS values are based on average delay and v/c ratio (degree of saturation) per lane.

LOS F will result if v/c > irrespective of lane delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 2010).

Roundabout Capacity Model: US HCM 2010.

HCM Delay Model used. Geometric Delay not included.

Processed: Tuesday, October 01, 2013 10:17:16 AM SIDRA INTERSECTION 5.1.13.2093

Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

Project: H:\Pdata\70100329\Traffic\TRAFFIX\Miti\RAB Analysis.sip

8000182, RBF CONSULTING, FLOATING

Site: 16. Monterey / Park: 2035 AM

LANE SUMMARY

16. Monterey Ave / Park Ave 2035 with Proposed Plan Conditions PM Peak Hour Roundabout

Lane Use	and Pe	erforma	ance													
		Deman	d Flows				Deg.	Lane	Average	Level of	95% Back	of Queue	Lane	SL	Cap. I	Prob.
	L	Τ	R	Total	HV	Cap.	Satn	Util.	Delay	Service	Vehicles	Distance	Length	Type		Block.
On the ND	veh/h	veh/h	veh/h	veh/h	%	veh/h	v/c	%	sec		veh	ft	ft		%	%
South: NB	_		_				_									
Lane 1	2	215	0	217	2.0	875	Р	100	6.7	LOSA	1.0	24.2	1600	-	0.0	0.0
Lane 2	0	0	722	722	2.0	875	P	100	24.4	LOS C	9.9	251.1	1600	_	0.0	0.0
Approach	2	215	722	939	2.0		0.825		20.3	LOS C	9.9	251.1				
East: WB																
Lane 1	328	11	65	403	2.0	882	Р	100	9.8	LOSA	2.3	58.7	1600	_	0.0	0.0
Approach	328	11	65	403	2.0		0.457		9.8	LOSA	2.3	58.7				
North: SB																
Lane 1	163	130	3	296	2.0	783	Р	100	9.2	LOSA	1.6	41.9	1600	_	0.0	0.0
Approach	163	130	3	296	2.0		0.378		9.2	LOSA	1.6	41.9				
West: EB																
Lane 1	6	13	16	35	2.0	588	Р	100	6.8	LOSA	0.2	4.9	1600	_	0.0	0.0
Approach	6	13	16	35	2.0		0.060		6.8	LOSA	0.2	4.9				
Intersection				1673	2.0		0.825		15.5	LOS C	9.9	251.1				

Copyright © 2000-2011 Akcelik and Associates Pty Ltd

P: You need to Process this Site (F9) for this variable to be computed.

Level of Service (LOS) Method: Delay & v/c (HCM 2010).

Roundabout LOS Method: Same as Sign Control.

Lane LOS values are based on average delay and v/c ratio (degree of saturation) per lane.

LOS F will result if v/c > irrespective of lane delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 2010).

Roundabout Capacity Model: US HCM 2010.

HCM Delay Model used. Geometric Delay not included.

Processed: Tuesday, October 01, 2013 10:16:37 AM SIDRA INTERSECTION 5.1.13.2093

www.sidrasolutions.com

Project: H:\Pdata\70100329\Traffic\TRAFFIX\Miti\RAB Analysis.sip

8000182, RBF CONSULTING, FLOATING

Site: 16. Monterey / Park: 2035 PM

MITIG8 - 2035	o AM	Tu	le Oct I,	2013 14:	10:48		Page	T-T
	 	 	of Servic		tion Report			
*****	2000 HCM Op	eratio	ns Metho	d (Future	Volume Alt	ernati		****
Intersection	#17 Capito	ola Ave	/ Stock	ton Ave				
Cycle (sec): Loss Time (se		70			al Vol./Cap		0.8	
Optimal Cycle	e: OPTIMIZE	D .		Level	Of Service:			C
Street Name:		Capito	la Ave			Stockt	on Ave	
Approach: Movement:	L - T	- R	L -	T - R	L - T	- R	L - T	- R
Control:	Permit	ted	Per	mitted	Permit	Permit	ted	
Rights: Min. Green:	0 0		0	clude 0 0	0 0	0		0
Y+R: Lanes:							4.0 4.0 0 1 0	
Volume Module								
Base Vol:	203 0			39 20	0 29	320	406 65	0
Growth Adj: Initial Bse:		1.00 373	1.00 1. 15	00 1.00 39 20	1.00 1.00 0 29	1.00 320	1.00 1.00 406 65	1.00
Added Vol:		0	0	0 0	0 0	0	0 0	0
PasserByVol: Initial Fut:		0 373		0 0 39 20	0 0 0 29	0 320	0 0 406 65	0 0
User Adj:		1.00	1.00 1.		1.00 1.00	1.00	1.00 1.00	1.00
-	0.95 0.95	0.95	0.95 0.		0.95 0.95	0.95	0.95 0.95	0.95
PHF Volume: Reduct Vol:	214 0 0 0	393 0		41 21 0 0	0 31	337 0	427 68 0 0	0
Reduced Vol:		393		41 21	0 31	337	427 68	0
PCE Adj:	1.00 1.00	1.00	1.00 1.	00 1.00	1.00 1.00	1.00	1.00 1.00	1.00
MLF Adj:		1.00	1.00 1.		1.00 1.00	1.00		1.00
FinalVolume:		393 		41 21	0 31	337	427 68	0
Saturation Fi	low Module: 1900 1900		1900 19	00 1900	1900 1900	1900	1900 1900	1900
Adjustment:			0.92 0.		1.00 0.88	0.88		1.00
	1.00 0.00	1.00		53 0.27	0.00 0.08	0.92		
Final Sat.:			356 9			1526 	942 151	0
Capacity Anal	lysis Modul 0.16 0.00	e: 0.24	0 04 0	04 0.04		0.22	0.45 0.45	0 00
Vol/Sat: Crit Moves:		****	0.04 0.		0.00 0.22		****	0.00
Green/Cycle:		0.29	0.29 0.		0.00 0.54	0.54	0.54 0.54 0.84 0.84	0.00
Volume/Cap: Uniform Del:	0.55 0.00 21.0 0.0	0.84 23.4	0.15 0. 18.5 18		0.00 0.41 0.0 9.5	0.41 9.5	13.6 13.6	0.0
IncremntDel:	1.7 0.0	12.9		.1 0.1	0.0 0.3	0.3	10.5 10.5	0.0
InitQueuDel:	0.0 0.0	0.0		.0 0.0	0.0 0.0	0.0	0.0 0.0	0.0
Delay Adj: Delay/Veh:	1.00 0.00 22.7 0.0	1.00 36.3	1.00 1. 18.7 18		0.00 1.00 0.0 9.8	1.00 9.8	1.00 1.00 24.1 24.1	0.00
User DelAdj:		1.00	1.00 1.		1.00 1.00	1.00	1.00 1.00	1.00
AdjDel/Veh:	22.7 0.0	36.3	18.7 18	.7 18.7	0.0 9.8	9.8	24.1 24.1	0.0
LOS by Move: HCM2kAvgQ:	C A 4 0	D 9	B 1	B B 1	A A 0 5	A 5	C C 12 12	A 0
IICIIZAAVYŲ.	4 0	J	Τ.	т Т	0 5	S	12 12	U

Traffix 8.0.0715 (c) 2008 Dowling Assoc. Licensed to RBF, MONTEREY BAY

					tion Report				
******					Volume Alt			****	
Intersection					******	*****	* * * * * * * * * * *	*****	
Cycle (sec):		70		Critic	al Vol./Cap	o.(X):	0.8	89	
Loss Time (se					e Delay (se				
Optimal Cycle			******		Of Service:		C ******		
Street Name:			la Ave			Stockto			
Approach:	North	_		Bound	East Bo		West Bound		
Movement:		Г – R		- R			L - T - R		
Control:	I	 mitted	Perm		Permit				
Rights:		clude		clude		ide	Permit Inclu		
Min. Green:	0		0		0 0	0	0 0	0	
Y+R:		.0 4.0	4.0 4.		4.0 4.0		4.0 4.0	4.0	
Lanes:		0 0 1		L! 0 0 	0 0 0		0 1 0		
Volume Module	I								
Base Vol:	272	0 501	6 3	38 17	0 25	308	374 86	0	
Growth Adj:			1.00 1.0		1.00 1.00	1.00	1.00 1.00	1.00	
Initial Bse:		0 501		38 17	0 25	308	374 86	0	
Added Vol: PasserByVol:	0	0 0	0	0 0	0 0	0 0	0 0	0	
Initial Fut:		0 501	-	38 17	0 25	308	374 86	0	
User Adj:	1.00 1.	00 1.00	1.00 1.0	00 1.00	1.00 1.00	1.00	1.00 1.00	1.00	
PHF Adj:	0.95 0.9		0.95 0.9		0.95 0.95	0.95	0.95 0.95	0.95	
PHF Volume: Reduct Vol:	286 0	0 527	6 4 0	10 18 0 0	0 26 0 0	324 0	394 91 0 0	0	
Reduced Vol:		0 527		10 18	0 26	324	394 91	0	
PCE Adj:	1.00 1.		1.00 1.0	00 1.00	1.00 1.00	1.00	1.00 1.00	1.00	
MLF Adj:	1.00 1.		1.00 1.0		1.00 1.00	1.00	1.00 1.00	1.00	
FinalVolume:		0 527		10 18	0 26	324	394 91 	0	
Saturation F	I								
Sat/Lane:	1900 19	00 1900	1900 190	00 1900	1900 1900	1900	1900 1900	1900	
Adjustment:			0.95 0.9		1.00 0.88	0.88	0.62 0.62	1.00	
Lanes: Final Sat.:	1.00 0.0		0.10 0.6 177 112		0.00 0.08 0 125	0.92 1538	0.81 0.19 961 221	0.00	
								·	
Capacity Ana	lysis Mo	dule: '	1	'	1	'	ı	'	
Vol/Sat:	0.21 0.		0.04 0.0	0.04	0.00 0.21	0.21	0.41 0.41	0.00	
<pre>Crit Moves: Green/Cycle:</pre>	0 27 0	**** 00 0.37	0.37 0.3	37 0.37	0.00 0.46	0.46	**** 0.46 0.46	0.00	
Volume/Cap:	0.57 0.0		0.10 0.1		0.00 0.46	0.46	0.89 0.89	0.00	
Uniform Del:		.0 20.8	14.5 14.		0.0 12.9	12.9	17.2 17.2	0.0	
<pre>IncremntDel:</pre>		.0 15.2	0.1 0.		0.0 0.4	0.4	16.3 16.3	0.0	
InitQueuDel:		.0 0.0	0.0 0.		0.0 0.0	0.0	0.0 0.0	0.0	
Delay Adj: Delay/Veh:	1.00 0.0	00 1.00 .0 36.0	1.00 1.0 14.6 14.		0.00 1.00 0.0 13.3	1.00 13.3	1.00 1.00 33.6 33.6	0.00	
User DelAdj:			1.00 1.0		1.00 1.00	1.00	1.00 1.00	1.00	
AdjDel/Veh:		.0 36.0	14.6 14.	6 14.6	0.0 13.3	13.3	33.6 33.6	0.0	
LOS by Move:	В	A D	В	B B	A B	В	C C	A	
HCM2kAvgQ:	5	0 12	1	1 1	0 5	5	13 13	0	

Traffix 8.0.0715 (c) 2008 Dowling Assoc. Licensed to RBF, MONTEREY BAY

______ _____

Level Of Service Computation Report 2000 HCM Operations Method (Future Volume Alternative)

	2000 HCM Operations Method (Future Volume Alternative) ************************************													
Intersection	#21	Park A	Ave / K	enned	y Dr									
Cycle (sec):		6	55			Critic	al Vo	l./Car	o.(X):		0.9	906		
Loss Time (se	ec):		55 9 35			Averag								
Optimal Cycle	e:	8	35			Level	Of Se	rvice	:			C		
		****	*****	****	****				******					
Street Name:			Park	Ave					Kenne	edy Dr				
Approach:														
Movement:						- R					- T			
Control:	Pi	rotect	tea	Pi	roteci	tea 	Sp	T1C P1	nase	Split Phase Ovl				
Rights:	0	OAT				ıae			aae ^					
Min. Green:				0		0		0	0	0		0		
Y+R:	4.0	4.0	4.0	4.0	4.0	4.0 1 0	4.0	4.0	4.0	4.0	4.0	4.0		
Lanes:														
Volume Module														
Base Vol:	10	246	71	292	157	298	252	30	4	208	175	352		
Growth Adj:				1.00		1.00		1.00			1.00	1.00		
Initial Bse:		246	71	292	157	298	252		4	208	175	352		
Added Vol:		0	0	0	0	0	0		0	0		0		
PasserByVol:		0	0	0	0	0	0		0	0	0	0		
Initial Fut:			71	292		298	252		4	208	175	352		
User Adj:			1.00		1.00	1.00		1.00	1.00		1.00	1.00		
_	0.98		0.98		0.98	0.98		0.98	0.98		0.98	0.98		
PHF Volume:		251	72	298	160	304	257		4	212	179	359		
		0	0	0	0	0	0	0	0	0	0	0		
Reduct Vol: Reduced Vol:	10	251	72	298	160	304	257	31	4	212	179	359		
PCE Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		
MLF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		
FinalVolume:	10	251	72	298	160	304	257	31	4	212	179	359		
Saturation F														
Sat/Lane:					1900			1900			1900	1900		
Adjustment:				0.95		0.90		0.96			0.97	0.85		
Lanes:			1.00		0.35	0.65		0.10	0.01		0.46	1.00		
Final Sat.:			1615		591	1122		191	25		846	1615		
Capacity Anal														
Vol/Sat:	_			0 17	0 27	0 27	0 16	0 16	0 16	0 21	0.21	0.22		
Crit Moves:		0.14	0.04	0.17	****	0.27	0.10	0.10	****		****	0.22		
Green/Cycle:		0 21	0 44	0 25	0 30	0 30	0 18	0 18			0.23	0.48		
Volume/Cap:		0.67	0.10		0.91	0.91		0.91	0.91		0.23	0.46		
Uniform Del:			10.7		21.9	21.9		26.2	26.2		24.2	11.3		
IncremntDel:		4.5	0.1		19.6	19.6		27.7	27.7		22.3	0.4		
InitQueuDel:	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0		
Delay Adj:		1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00		
Delay/Veh:		28.3	10.8		41.5	41.5		53.9	53.9		46.6	11.8		
User DelAdj:		1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00		
AdjDel/Veh:		28.3	10.8		41.5	41.5		53.9	53.9		46.6	11.8		
LOS by Move:	E	С	В	С	D	D	D		D	D	D	В		
HCM2kAvgQ:	9	6	1	5	10	10	10	10	10	12	12	5		

Traffix 8.0.0715 (c) 2008 Dowling Assoc. Licensed to RBF, MONTEREY BAY

______ ______ Level Of Service Computation Report

2000 HCM Operations Method (Future Volume Alternative) ****************** Intersection #21 Park Ave / Kennedy Dr ************************ Cycle (sec): 65 Critical Vol./Cap.(X):
Loss Time (sec): 9 Average Delay (sec/veh):
Optimal Cycle: 65 Level Of Service: Critical Vol./Cap.(X): 0.829 *************************** Street Name: Park Ave Kennedy Dr
Approach: North Bound South Bound East Bound West Bound
Movement: L - T - R L - T - R L - T - R -----||-----||------|
 Control:
 Protected
 Protected
 Split Phase
 Split Phase

 Rights:
 Ovl
 Include
 Include
 Ovl

 Min. Green:
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 -----||-----||------| Volume Module: Base Vol: 8 397 294 310 165 185 201 137 6 85 60 314 PHF Volume: 8 418 309 326 174 195 212 144 6 89 63 331

-----||-----||------| Saturation Flow Module:

Adjustment: 1.00 1.00 0.85 0.95 0.92 0.92 0.97 0.97 0.97 0.97 0.85 Lanes: 0.02 0.98 1.00 1.00 0.47 0.53 0.58 0.40 0.02 0.59 0.41 1.00 Final Sat.: 37 1861 1615 1805 825 925 1077 734 32 1083 764 1615 -----|----||------|

Vol/Sat: 0.22 0.22 0.19 0.18 0.21 0.21 0.20 0.20 0.20 0.08 0.08 0.20

Capacity Analysis Module:

Crit Moves: **** **** Green/Cycle: 0.27 0.29 0.39 0.23 0.25 0.25 0.24 0.24 0.24 0.10 0.10 0.33 AdjDel/Veh: 33.1 27.7 15.5 31.8 35.2 35.2 36.0 36.0 36.0 54.5 54.5 20.2 LOS by Move: C C B C D D D D D D C HCM2kAvgQ: 11 10 5 7 8 8 10 10 10 6 6 6

Traffix 8.0.0715 (c) 2008 Dowling Assoc. Licensed to RBF, MONTEREY BAY

APPENDIX E

GREENHOUSE GAS EMISSIONS

.....

City of Capitola

2010 Baseline Community-wide Greenhouse Gas Emissions Inventory

Prepared by: The Association of Monterey Bay Area Governments | Energy Watch

With Assistance from ICLEI - Local Governments for Sustainability USA and Pacific Gas and Electric Company

Prepared for: The City of Capitola

Acknowledgements

City of Capitola

Jamie Goldstein, City Manager Rich Grunow, Community Development Manager Katie Cattan. Senior Planner

Association of Monterey Bay Area Governments

Maura Twomey, Executive Director Elisabeth Russell, Special Projects Manager Chris Sentieri, Special Projects Associate

Pacific Gas and Electric Company

Kerynn Gianotti, Senior Program Manager **John Joseph**, Program Manager

ICLEI-Local Governments for Sustainability USA

Michael Schmitz, Executive Director Michael Steinhoff, Senior Climate Program Officer Amruta Sudhalker, Climate Program Officer

DC&E | The Planning Center

Ben Noble, Associate Principal **Alexis Mena**, Associate **Nicole Vermilion**. Associate

This report was prepared by Chris Sentieri, Special Projects Associate at the Association of Monterey Bay Area Governments. The Association of Monterey Bay Area Governments Energy Watch team would like to thank the City of Capitola staff for providing much of the insight and local information necessary for the completion of this report.

October 2013

Table of Contents

Table of Contents	3
Tables and Figures	4
List of FiguresList of Tables	
Executive Summary	5
Climate Change Background	7
Evidence of Human-Caused Climate Change California Policy ICLEI Climate Mitigation Program	8 9
Inventory Methodology	
Understanding a Greenhouse Gas Emissions Inventory Quantifying Greenhouse Gas Emissions	
Community-wide Emissions Inventory Results	14
Community Profile	14 14 18
Conclusion	22
Appendix A: Community Inventory Details	23

© 2013 ICLEI-Local Governments for Sustainability USA. All Rights Reserved.

Tables and Figures

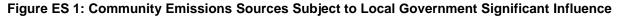
List of Figures

ES 1	Community Emissions Sources Subject to Local Government Significant Influence
ES 2	Community Emissions Activities Subject to Local Government Significant Influence
1	Observed Changes in Global Temperature, Sea-level and Snow Cover
2	ICLEI Climate Mitigation Milestones
3	Relationship of Community and Government Operations Inventories
4	Significantly Influenced Emissions by Sector (MTCO2e)
5	Significantly Influenced Emissions by Sector (Percentage of Total)
6	Significantly Influenced Source Emissions (MTCO2e)
7	Significantly Influenced Activity Emissions (MTCO2e)
8	Household Consumption Emissions for an Average Household in Capitola

List of Tables

ES 1	2010 Capitola Community-wide Baseline GHG Emissions Inventory Summary
1	Capitola Community Indicators
2	Significantly Influenced GHG Emissions by activity and source
3	Community-Wide GHG Emissions by Category
4	Total Household Consumption Emissions for Capitola
5	Indicators Used in Emissions Forecast
6	2035 and 2050 Business As Usual GHG Emissions Forecast
A-1	Summary of Included and Excluded Community Emissions
A-2	Community Inventory Calculation Method and Data Source Details

Executive Summary


The City of Capitola recognizes that greenhouse gas (GHG) emissions from human activity are catalyzing profound climate change, the consequences of which pose substantial risks to the future health, wellbeing, and prosperity of our community. Furthermore, Capitola has multiple opportunities to benefit by acting quickly to reduce community GHG emissions. These opportunities include: reducing energy and transportation costs for residents and businesses, creating green jobs, improving health of residents, making your community a more resilient and attractive place to live and locate a business.

Capitola has begun the climate action planning process, starting with inventorying emissions. This report provides estimates of greenhouse gas emissions resulting from activities in Capitola as a whole in 2010.

Table ES 1: 2010 Capitola Community-wide Baseline GHG Emissions Inventory Summary

Source/Activity	2010 Community-wide Baseline GHG Inventory	
Electricity Consumption	12,776	
Stationary Fuel Combustion	16,049	
Transportation and Mobile Sources	57,123	
Solid Waste Generation	1,476	
Water Treatment and Distribution	667	
TOTAL	88,091	

There are a variety of emissions sources and activities included in the community-wide inventory. A subset of these, identified as local government significantly influenced emissions, are most policy relevant. Figure ES 1 shows significantly influenced emissions from in-boundary Sources, while Figure ES 2 shows the significantly influenced emissions Activities. As you can see, the largest contributor in this set is Transportation and Mobile Sources with 57,123 Metric Tons of Carbon Dioxide Equivalent (MTCO2e) of emissions. The next largest contributors are Stationary Fuel Combustion (i.e. – Residential and Commercial/Industrial Natural Gas Consumption) with 16,049 MTCO2e and Electricity Consumption with 12,776 MTCO2e. Actions to reduce emissions in each of these sectors will be a key part of a climate action plan. Solid Waste Generation and Water Treatment and Distribution were responsible for the remainder of significantly influenced sources of emissions.

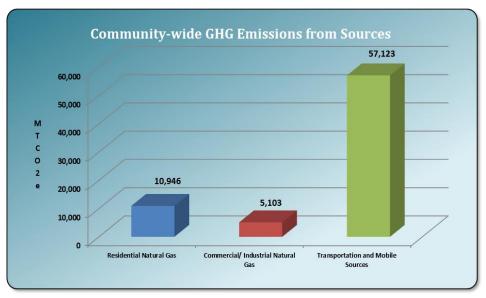
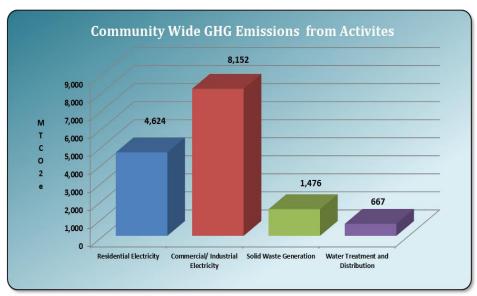



Figure ES 2: Community Emissions Activities Subject to Local Government Significant Influence

Climate Change Background

Naturally occurring gases dispersed in the atmosphere determine the Earth's climate by trapping solar radiation. This phenomenon is known as the greenhouse effect. Overwhelming evidence shows that human activities are increasing the concentration of greenhouse gases and changing the global climate. The most significant contributor is the burning of fossil fuels for transportation, home heating, electricity generation and other purposes, which introduces large amounts of carbon dioxide and other greenhouse gases into the atmosphere. Collectively, these gases intensify the natural greenhouse effect, causing global average surface and lower atmospheric temperatures to rise.

Capitola could be impacted by the effects of sea-level rise, changes in precipitation patterns, extreme weather events, increased wildfires, and other inclement effects of climate change. Current and expected impacts to Capitola

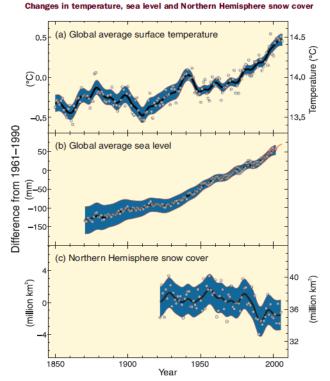


Figure 1: Observed changes in global temperature, sea level and snow cover

related to climate change are explained below. Other expected impacts in California include frequent and damaging storms accompanied by flooding and landslides, summer water shortages as a result of reduced snow pack, and the disruption of ecosystems, habitats, and agricultural activities.

Many communities in the United States have taken responsibility for addressing climate change at the local level. Reducing fossil fuel use in the community can have many benefits in addition to reducing greenhouse gas emissions. More efficient use of energy decreases utility and transportation costs for residents and businesses. Retrofitting homes and businesses to be more efficient creates local jobs. In addition, money not spent on energy is more likely to be spent a local businesses and add to the local economy. Reducing fossil fuel use improves air quality, and increasing opportunities for walking and bicycling improves residents' health.

Evidence of Human-Caused Climate Change

There is overwhelming scientific consensus that the global climate is changing, and that human actions, primarily the burning of fossil fuels, are the main cause of those changes. The Intergovernmental Panel on Climate Change (IPCC) is the scientific body charged with bringing together the work of thousands of climate scientists. The IPCC's Fourth Assessment Report states that "warming of the climate system is unequivocal." Furthermore, the report finds that "most of the observed increase in global average temperatures since the mid-20th century is *very likely* due to the observed increase in anthropogenic GHG concentrations."

2012 was the hottest year on record for the continental United States, with two dozen cities breaking or tying their all-time high temperature records.² Globally, the 12 years from 2001-2012 are among the 14 hottest on record, and 1998 was the only year in the 20th century hotter than 2012.³ 1976 was the last year with a below average global temperature. The steady uptick in average temperatures is significant and expected to continue if action is not taken to greatly reduce greenhouse gas emissions.

California Policy

California has a number of state level policies that serve as regulatory drivers for climate action planning at the local government level, which are described below.

Global Warming Solutions Act (AB32)

California passed the Global Warming Solutions Act (AB 32) in 2006, which charged the California Air Resources Board (CARB) with implementing a comprehensive statewide program to reduce greenhouse gas emissions. AB 32 established the following greenhouse gas emissions reduction targets for the state of California:

- 2000 levels by 2010
- 1990 levels by 2020

SB 375

SB 375 enhances California's ability to reach its AB 32 goals by promoting good planning with the goal of more sustainable communities. SB 375 requires CARB to develop regional greenhouse gas emission reduction targets for passenger vehicles. CARB is to establish targets for 2020 and 2035 for each region covered by one of the State's 18 metropolitan planning organizations (MPOs).

¹ IPCC, 2007: Climate Change 2007: Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, Pachauri, R.K and Reisinger, A. (eds.)]. IPCC, Geneva, Switzerland, 104 pp.

pp. ² Burt, Christopher C. "2012 a Record Warm Year for Continental U.S"., January 2, 2013. http://www.wunderground.com/blog/weatherhistorian/comment.html?entrynum=112

NOAA: State of the Climate 2012 Summary. http://www.ncdc.noaa.gov/sotc/

Executive Order S-3-05

emissions reduction progress.

Executive Order S-3-05, issued by Governor Schwarzenegger, reinforces these goals and also sets a schedule for the reporting of both the measured impacts of climate change upon California's natural environment and the emissions reduction efforts undertaken by a myriad of state, regional, and local groups. Executive Order S-3-05 establishes an additional target of 80% below 1990 levels by 2050. Capitola's GHG emissions inventory is intended to enable the City to develop effective GHG reduction policies and programs to meet these targets and track

Figure 2: ICLEI Climate Mitigation Milestones

California Environmental Quality Act (CEQA)

CEQA requires public agencies to evaluate the environmental impacts of discretionary development plans and projects in their jurisdictions. CEQA guidelines were updated in March 2010 to require analysis of climate change in CEQA documents. Many jurisdictions are finding that climate change impacts from local government activities are "significant" under CEQA, and are identifying emissions reductions targets and Climate Action Plans as mitigation measures to reduce climate change impacts to less-than-significant levels.

ICLEI Climate Mitigation Program

In response to the problem of climate change, many communities in the United States are taking responsibility for addressing emissions at the local level. Since many of the major sources of greenhouse gas emissions are directly or indirectly controlled through local policies, local governments have a strong role to play in reducing greenhouse gas emissions within their boundaries. Through proactive measures around land use patterns, transportation demand management, energy efficiency, green building, waste diversion, and more, local governments can dramatically reduce emissions in their communities. In addition, local governments are primarily responsible for the provision of emergency services and the mitigation of natural disaster impacts.

ICLEI provides a framework and methodology for local governments to identify and reduce greenhouse gas emissions, organized along Five Milestones, also shown in Figure 2:

1. Conduct an inventory and forecast of local greenhouse gas emissions;

- **2.** Establish a greenhouse gas emissions reduction target;
- **3.** Develop a climate action plan for achieving the emissions reduction target;
- 4. Implement the climate action plan; and,
- 5. Monitor and report on progress.

This report represents the completion of ICLEI's Climate Mitigation Milestone One for the community as a whole, and provides a foundation for future work to reduce greenhouse gas emissions in Capitola.

Sustainability & Climate Change Mitigation Activities in Capitola

Capitola has already implemented and/or participated in programs that have or will lead to ancillary benefits in the form of energy conservation and greenhouse gas mitigation. The following are some examples:

- Lead-by-example actions to reduce government operations emissions
 - Active and Ongoing Participation in the AMBAG Energy Watch energy efficiency and conservation programs
 - Formation of the Commission on the Environment, which informs City staff and elected on issues related to environmental protection and stewardship
- Business engagement and recognition programs
 - o Monterey Bay Green Business Certification Program
- Recycling and waste reduction programs

Inventory Methodology

Understanding a Greenhouse Gas Emissions Inventory

The first step toward achieving tangible greenhouse gas emission reductions requires identifying baseline emissions levels and sources and activities generating emissions in the community. This report presents emissions from the Capitola community as a whole. Emissions from government operations is a subset of the community inventory included as part of the Non-residential sector, as shown in Figure 3. For example, data on commercial energy use by the community includes energy consumed by municipal buildings, and

community vehicle-miles-traveled estimates include miles

driven by municipal fleet vehicles.

As local governments have continued to join the climate protection movement, the need for a standardized approach to quantify GHG emissions has proven essential. This inventory uses the approach and methods provided by the Community Greenhouse Gas Emissions Protocol (Community Protocol)4.

Community Emissions Protocol

The Community Protocol was released by ICLEI in October 2012. and represents a new national standard in guidance to help U.S. local governments develop effective community GHG emissions inventories. It establishes reporting requirements for all community GHG emissions inventories, provides detailed

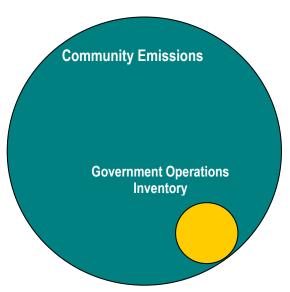


Figure 3: Relationship of Community and Government Operations Inventories

accounting guidance for quantifying GHG emissions associated with a range of emission sources and community activities, and provides a number of optional reporting frameworks to help local governments customize their community GHG emissions inventory reports based on their local goals and capacities. The State of California Governor's Office of Planning and Research recommends that California local governments follow the Community Protocol when undertaking their greenhouse gas emissions inventories.

⁴ http://www.icleiusa.org/tools/ghg-protocol/community-protocol Capitola Community-Wide GHG Emissions Inventory

Quantifying Greenhouse Gas Emissions

Sources and Activities

Communities contribute to greenhouse gas emissions in many ways. Two central categorizations of emissions are used in the community inventory: 1) GHG emissions that are produced by "sources" located within the community boundary, and 2) GHG emissions produced as a consequence of community "activities".

Source	Activity
Any physical process inside the jurisdictional boundary that releases GHG emissions into the atmosphere	The use of energy, materials, and/or services by members of the community that result in the creation of GHG emissions.

By reporting on both GHG emissions sources and activities, local governments can develop and promote a deeper understanding of GHG emissions associated with their communities. A purely source-based emissions inventory could be summed to estimate total emissions released within the community's jurisdictional boundary. In contrast, a purely activity-based emissions inventory could provide perspective on the efficiency of the community, even when the associated emissions occur outside the jurisdictional boundary. The division of emissions into sources and activities replaces the scopes framework that is used in government operations inventories, but that does not have a clear definition for application to community inventories.

Base Year

The inventory process requires the selection of a base year with which to compare current emissions. Capitola's community greenhouse gas emissions inventory utilizes 2010 as its base year.

Quantification Methods

Greenhouse gas emissions can be quantified in two ways:

- Measurement-based methodologies refer to the direct measurement of greenhouse gas emissions (from a monitoring system) emitted from a flue of a power plant, wastewater treatment plant, landfill, or industrial facility.5
- Calculation-based methodologies calculate emissions using activity data and emission factors. To calculate emissions accordingly, the basic equation below is used: Activity Data x Emission Factor = Emissions

All emissions sources in this inventory are quantified using calculation based methodologies. Activity data refer to the relevant measurement of energy use or other greenhouse gas-generating processes such as fuel consumption by fuel type, metered annual electricity consumption, and annual vehicle miles traveled. Please see appendices for a detailed listing of the activity data used in composing this inventory.

Known emission factors are used to convert energy usage or other activity data into associated quantities of emissions. Emissions factors are usually expressed in terms of emissions per unit of activity data (e.g. lbs CO₂/kWh of electricity).

For this inventory, calculations were made using the data and emissions factors provided by ICLEI, Pacific Gas and Electric Company (PG&E), CalRecycle, CalTrans, and the Monterey Bay Unified Air Pollution Control District.

⁵ Capitola's community inventory includes emissions data provided by the [INSERT ENTITY] that was gathered through [INSERT MEHTOD, E.G: DIRECT MEASUREMENT].

Community-wide Emissions Inventory Results

Following the Community Protocol, this inventory report organizes emissions in several frames. Each frame includes a particular set of emissions sources and activities, and each helps to tell a different story about community emissions. This report looks at Capitola's community emissions through the following frames:

- Local Government Significant Influence
- Household Consumption

Community Profile

To put emissions inventory data in context, it is helpful to have some basic information about community such as population and number of households. This information is provided in Table 1.

Table 1: Capitola Community Indicators

Estimated 2010 Population	9,918
Estimated 2010 Households	5,534
Estimated 2010 Jobs	6,170

Significantly Influenced Emissions Frame

Capitola has chosen first to focus on emissions over which the City government has significant influence. This frame emphasizes policy relevance, highlighting a set of emission sources and activities that Capitola has the greatest opportunity to address. This frame includes all of the five Basic Emissions Generating Activities required by the community protocol. Table 2 and Figure 6 summarize significantly influenced emissions by source and activity.

Table 2: Significantly Influenced GHG Emissions by Activity and Source

Sector	Sources	Activities	TOTALS
Residential	10,946	4,624	15,570
Commercial / Industrial	5,103	8,152	13,255
Transportation and Mobile Sources	57,123	n/a	57,123
Solid Waste	n/a	1,476	1,476
Water Treatment and Distribution	n/a	667	667
TOTALS	73,172	14,920	88,091
Percentage of Total CO2e	83%	17%	100.0%

Capitola will focus on these emissions sources and activities in developing a climate action plan. The total significantly influenced emissions of 88,091 tons CO2e will be the baseline for setting an emissions reduction target and measuring future emissions reductions against. Figure 4 shows significant influence activity emissions by sector, while Figure 5 shows significant influence source emissions by sector. These figures only show emissions that are included in the significant influence frame, and are not intended to be comprehensive of all in-boundary sources or community activities.

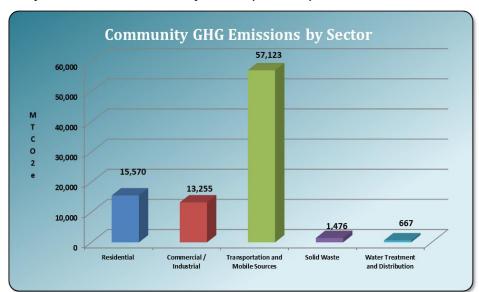


Figure 4: Significantly Influenced Emissions by Sector (MTCO2e)

Figure 5: Significant Influence Emissions by Sector (Percentage of Total Emissions)

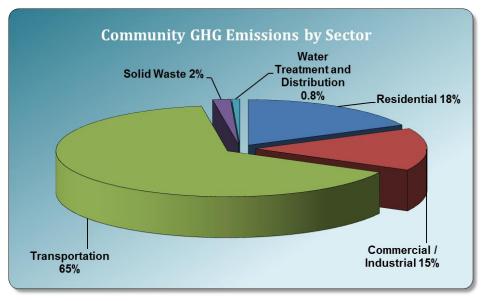


Figure 6 shows a more detailed breakdown of significantly influenced activity emissions, and Figure 7 shows a more detailed breakdown of significantly influenced source emissions.

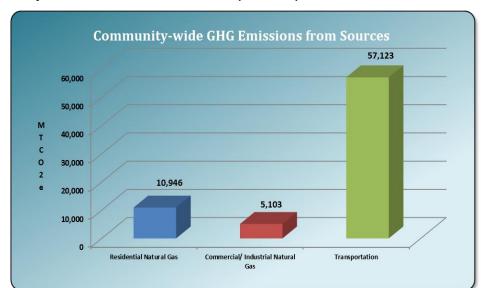
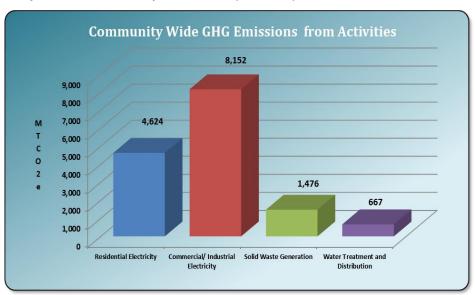



Figure 6: Significantly Influenced Source Emissions (MTCO2e)

Figure 7: Significantly Influenced Activity Emissions (MTCO2e)

The Transportation sector is the largest contributor to emissions over which Capitola has significant influence, representing approximately 65% of the City's total emissions. This will be an important activity to focus efforts on in developing a climate action plan. The Residential and Commercial/Industrial sectors also account for a large part of significantly influence emissions, and will also be important to address.

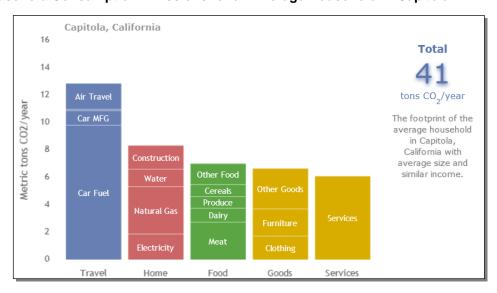
Table 3: Community-Wide GHG Emissions by Category

Source or Activity	Activity Data Quantity and Unit	Emissions (MTCO2e)
Residential Use of Electricity	22,835,419 kWh	4,624
Commercial/Industrial Use of Electricity	36,291,610 kWh	8,152
Residential Stationary Combustion	2,071,672 therms	10,946
Commercial Stationary Combustion	966,194 therms	5,103
On-road Vehicle Travel	302,528 vehicle miles traveled daily	54,744
Off-road Vehicle Emissions	n/a*	2,379
Potable Water Treatment and Distribution	1,120 acre feet per year	260
Wastewater Treatment	1.08 million gallons per day	407
Generation of Solid Waste	8,803 tons	1,476
	Total Community-Wide Emissions	88,091

^{*}Note- Source for Off-road Vehicle Travel emissions estimate: Santa Cruz County Regional Transportation Commission Study- 2004 Inventory of Greenhouse Gas Emissions.

Household Consumption Frame

The second frame through which Capitola has chosen to look at emissions is that of household consumption. The household consumption frame helps to illustrate the full, life cycle impacts of residents' activities. Household consumption includes lifecycle emissions associated with household electricity use, household natural gas use, household personal vehicle transportation, household use of public transportation, household use of water and wastewater services, household production of garbage, and household use of materials and services. Many of these emissions overlap with those looked at through the local government influence and communitywide activities frames. But the household consumption frame also includes emissions that are not included in the other frames, in particular emissions from goods and services that are produced outside the community.


Consumption-based emissions for communities in the U.S. are often – but not always – higher than in-boundary emissions. Consumption based emissions are also larger than geographic emissions for the nation as a whole, although communities with small residential populations, limited government presence, and large industrial or tourism activities (businesses serving non-resident customers) would find their consumption-based emissions to be relatively small. But regardless of whether consumption based emissions are larger or smaller, some of the emissions are different, and they represent additional ways in which the community contributes to climate change and by extension, additional opportunities for the community to reduce its contribution to climate change. Table 4 shows total household consumption

emissions for Capitola, while Figure 8 shows household consumption emissions for an average household in Capitola.

Table 4: Total Household Consumption Emissions for Capitola (Source: Cool Climate Calculator)

Average Household Emissions (MTCO2e/Year)	Number of Households	Total Household Consumption Emissions (MTCO2e/Year)	
41	5,534	226,894	

Figure 8: Household Consumption Emissions for an Average Household in Capitola

Looking at the household emissions frame shows that Food and Purchased Goods are large contributors to emissions, comparable in size to Household Energy Use. A range of actions can help to reduce these emissions, including materials management, reduction of wasted food, and sustainable purchasing practices by governments, businesses, and households. Capitola may want to look at educational efforts in some of these areas as part of its climate action plan.

Consumption emissions for an average household were obtained from the calculator at http://coolclimate.berkeley.edu. Residents who want to learn more about consumption-based emissions from their own household can use the calculator to obtain emissions based on their personal energy use, transportation and purchasing.

Community Emissions Forecast

In order to plan for GHG emission reductions strategies jurisdictions must estimate (or "forecast") future emissions under a Business As Usual (BAU) scenario, which assumes no policies or actions are implemented to curb GHG emissions. GHG Forecasting takes into account historical emission levels established in the Baseline year (2010), as well as expected growth or changes in conditions within the jurisdiction (i.e. - changes in population, expected new development in the Residential and/or Commercial/Industrial sectors, etc.).

The City of Capitola municipal staff and their contracted consultants have developed growth assumptions for the community's recent General Plan Update, which estimate the growth in populations, housing units, and employment in future years. Those growth assumptions provide the basis for the Compound Annual Growth Rates (CAGR) that have been applied to the appropriate sectors of the 2010 Baseline GHG Inventory to create the 2035 and 2050 BAU GHG Forecasts for the City of Capitola.

Table 5 shows expected changes in key indicators used in generating the forecast.

Table 5: Indicators Used in Emissions Forecast (Source: DC&E The Planning Center)

Indicator	2010 Value	2035 Value	Annual Growth Rate	Percent Change from 2010 to 2035
Population	9,918	10,198	0.11%	2.75%
Households	5,534	5,613	0.06%	1.41%
Employment	6,170	7,368	0.71%	16.26%

Under a business-as-usual scenario, the City of Capitola's significantly influenced emissions will grow by approximately 7 percent by the year 2050—from 88,091 MTCO2e to 94,430 MTCO2e—under a business as usual scenario.

Table 6 below shows the results of the 2035 and 2050 BAU GHG Forecast.

Table 6: 2035 and 2050 Business As Usual GHG Emissions Forecast

Source/Activity	2010 Community- wide GHG Inventory Update	2035 BAU GHG Forecast	2050 BAU GHG Forecast	Percent Change from 2010 to 2050
Electricity Consumption	12,776	14,082	14,928	17%
Stationary Fuel Combustion	16,049	17,689	18,753	17%
Transportation and Mobile Sources	57,123	57,986	58,510	2%
Solid Waste	1,476	1,517	1,542	4%
Water Treatment and Distribution	667	686	697	4%
TOTAL	88,091	91,960	94,430	7%

Conclusion

This inventory marks completion of Milestone One of the Five Milestones for Climate Mitigation. The next steps are to set an emissions reduction target, and to develop a climate action plan that identifies specific quantified strategies that can cumulatively meet that target. In addition, Capitola should continue to track key energy use and emissions indicators on an on-going basis. ICLEI recommends completing a re-inventory at least every five years to measure emissions reduction progress.

Emissions reduction strategies to consider for the climate action plan include energy efficiency, renewable energy, vehicle fuel efficiency, alternative transportation, vehicle trip reduction, land use and transit planning, waste reduction, and community education and engagement among others. This inventory shows that emissions from the transportation sector and energy consumption in the built environment (Electricity consumption and Stationary Fuel Combustion) will be particularly important to focus on. Through these efforts and others the City of Capitola can achieve additional benefits beyond reducing emissions, including: increase energy security and independency, saving businesses and residents money, creating jobs and improving Capitola's economic vitality and its quality of life.

Appendix A: Community Inventory Details

Table A-1 provides a summary of the emissions sources and activities that are included in the community inventory, as well as those potential sources that are excluded.

Table A-1: Summary of Included and Excluded Community Emissions

			Required Activities	r	uded u eporti mewo	ng	Excluded		
	Emissions Type		H A	SI	CA	нс	(IE, NA, NO, or NE)	Explanatory Notes	Emissions (MTCO ₂ e)
Built Environ	ment								
Use of fuel ir equipment	residential and commercial stationary combustion	Source AND Activity	х	x					
Industrial sta	tionary combustion sources	Source	Х	Х					
Electricity	Power generation in the community	Source					NO		
,	Use of electricity by the community	Activity	Х	Х					
District Heating/	District heating/cooling facilities in the community	Source					NO		
Cooling	Use of district heating/cooling by the community	Activity					NO		
Industrial process emissions in the community		Source					NE		
Refrigerant le	eakage in the community	Source					NE		
Transportation	on and Other Mobile Sources								
On-road Passenger	On-road passenger vehicles operating within the community boundary	Source	х	х					
Vehicles	On-road passenger vehicle travel associated with community land uses	Activity					NE		
On-road Freight	On-road freight and service vehicles operating within the community boundary	Source					NE		
Vehicles	On-road freight and service vehicle travel associated with community land uses	Activity					NE		
On-road tran	sit vehicles operating within the community boundary	Source	х	Х					
Transit Dail	Transit rail vehicles operating within the community boundary	Source					NO		
Transit Rail	Use of transit rail travel by the community	Activity					NE		
Inter-city pas boundary	senger rail vehicles operating within the community	Source					NO		
Freight rail v	ehicles operating within the community boundary	Source					NE		

			Required Activities	r	uded u eporti imewo	ng			
	Emissions Type	Source or Activity?	Req Acti	SI	CA	нс	Excluded	Notes	Emissions (MTCO2e)
Marine	Marine vessels operating within the community boundary	Source					NE		
	Use of ferries by the community	Activity					NO		
Off-road surface vehicles and other mobile equipment operating within the community boundary		Source	х	х					
Use of air tra	vel by the community	Activity	х			х			
Solid Waste									
Calid Wasta	Operation of solid waste disposal facilities in the community	Source					NO		
Solid Waste	Generation and disposal of solid waste by the community	Activity	х	х					
Water and W	astewater								
Potable Water -	Operation of water delivery facilities in the community	Source					NO		
Energy Use	Use of energy associated with use of potable water by the community	Activity	x	х					
Use of energy community	associated with generation of wastewater by the	Activity	х	х					
Centralized Wastewater	Process emissions from operation of wastewater treatment facilities located in the community	Source					NO		
Systems - Process Emissions	Process emissions associated with generation of wastewater by the community	Activity	х	x					
Use of sentic	systems in the community	Source AND activity					NE		
Agriculture									
	l animal production	Source					NO		
	mposition and treatment	Source					NO		
Upstream Im	pacts of Community-Wide Activities								
Upstream im community	pacts of fuels used in stationary applications by the	Activity					NE		
	d transmission and distribution (T&D) impacts of ectricity used by the community	Activity					NE		
Upstream im	pacts of fuels used for transportation in trips associated munity	Activity					NE		
	pacts of fuels used by water and wastewater facilities d and wastewater generated within the community	Activity					NE		
	pacts of select materials (concrete, food, paper, used by the whole community	Activity					NE		

	Source		r	Included under reporting frameworks:				
Emissions Type	or Activity?		SI	CA	нс	Excluded	Notes	Emissions (MTCO2e)
Independent Consumption-Based Accounting								
Household Consumption (e.g., gas & electricity, transportation, and the purchase of all other food, goods and services by all households in the community)	Activity	х			х			
Government Consumption (e.g., gas & electricity, transportation, and the purchase of all other food, goods and services by all governments in the community)	Activity					NE		
Life cycle emissions of community businesses (e.g., gas & electricity, transportation, and the purchase of all other food, goods and services by all businesses in the community)	Activity					NE		

Table A-2 provides details on calculation methods and data sources for each included activity and source.

Table A-2: Community Inventory Calculation Method and Data Source Details

Residential use of	Activity data		Emissions fact	Emissions factor				
electricity	Value	Unit	Value	Unit	Source			
	22,835,419	kWh	0.000203674	MTCO2e/kWh	PG&E	BE.2.1		
Method and data source n	otes:							

Commercial use of	Activity data		Emissions fact	Emissions factor				
electricity	Value	Unit	Value	Unit	Source			
	36,291,610	kWh	0.000203674	MTCO2e/kWh	PG&E	BE.2.1		
Method and data source n	otes:							

stationary combustion	Malara				Emissions factor				
stationary combastion	Value	Unit	Value	Unit	Source				
equipment	2,071,672	therm	0.00532	MTCO2e/therm	PG&E	BE.1.1			
Method and data source notes:									

Commercial use of Activity data			Emissions fa	Method		
stationary combustion	Value	Unit	Value	Unit	Source	
equipment	966,194	therm	0.00532	MTCO2e/therm	PG&E	BE.1.1

Method and data source notes:

On-road passenger	Activity dat	ta	Emissions fa	actor		Method
vehicle travel associated	Value	Unit	Value	Unit	Source	
with community land uses	302,528	Daily Vehicle Miles Traveled	Variable (See below)	See below	DC&E The Planning Center (VMT), AMBAG (EMFAC/TDM Outputs)	TR.1.A

Method and data source notes:

EMFAC. Bhupendra Patel, Senior Transportation Modeler- AMBAG: bpatel@ambag.org

On-road freight and service	Activity data		Emissions fac	Method		
vehicle travel associated	Value	Unit	Value	Unit	Source	
with	n/a					n/a
community land uses						

Method and data source notes:

Generation of solid waste	Activity data	1	Emissions fac	Method		
by the community	Value	Unit	Value	Unit	Source	
	8,083	tons	0.1826	MTCO2e/ton	ICLEI/CACP	SW.4.1

Method and data source notes:

http://www.ciwmb.ca.gov/Publications/default.asp?pubid=1097

Use of energy associated	Activity data		Emissions fact	Method		
with use of potable	Value	Unit	Value	Unit	Source	
water	1,277,338	kWh	0.000203674	MTCO2e/kWh	PG&E	Other

Method and data source notes:

Capitola Potable Water Consumption data provided by DC&E The Planning Center (Source: Soquel Creek Water District, 2010 Urban Water Management Plan) = 1,120 Acre Feet per Year Consumed = 364,953,600 Gallons Consumed * 0.0035 kWh/Gallon (Supply, Conveyance, Distribution and Treatment. Source: Table 2-E from CAPCOA. Quantifying Greenhouse Gas Mitigation Methods. August, 2010. http://www.capcoa.org/wp-content/uploads/2010/11/CAPCOA-Quantification-Report-9-14-Final.pdf)

Use of energy associated with generation of	Activity data		Emissions fa	Method		
	Value	Unit	Value	Unit	Source	
wastewater	1.08	Million	See below	See below	DC&E The	Other
		Gallons Per			Planning	
		Day (MGD)			Center	

Method and data source notes:

Capitola Wastewater is treated by the City of Santa Cruz Wastewater Treatment Facility. On October 2, 2013 Dan Seidel (SCWWTF Superintendent) provided the Total Average Daily Flow to the WWTF (10.6 MGD). That data, in conjunction with the Estimated Capitola MGD (1.08) provided by DC&E The Planning Center and the MBUAPCD provided data for total 2010 SCWWTF GHG Emissions (3,998 MTCO2e), was used to calculate the Estimated Emissions from Capitola's 2010 Wastewater. This includes the estimated emissions from the SCWWTF's energy consumption, process, and effluent.

Activity da	Activity data		Emissions factor		
Value	Unit	Value	Unit	Source	
n/a					n/a
	Value	Value Unit	Value Unit Value	Value Unit Value Unit	Value Unit Source